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The CMP admits a natural extension to hedgehogs

The classical Minkowski problem (CMP):

Existence, uniqueness and regularity of a closed convex hypersurface of
Rn+1 whose Gauss curvature is prescribed as a positive function on Sn.

Central role in:
the theory of convex bodies.
the theory of elliptic Monge-Ampère equations.

The CMP admits a natural extension to hedgehogs.

Hedgehogs = Minkowski differences of convex bodies (or hypersurfaces)

A way for exploring Monge-Ampère equations of mixed type.
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Hedgehogs as differences of convex bodies

Let
(
Kn+1,+, .

)
be the set of convex bodies of Rn+1 equipped with

Minkowski addition and multiplication by nonnegative real numbers:

K+ L = {x + y |x ∈ K, y ∈ L};
λ.K = {λx |x ∈ K}.(
Kn+1,+, .

)
is not a linear space: no subtraction in Kn+1.

Formal differences of convex bodies of Rn+1 do constitute a linear
space

(
Hn+1,+, .

)
.

Any formal difference K−L of two convex bodies K, L ∈ Kn+1 has
a nice geometrical representation in Rn+1, (Y.M.2 , Canad. J. Math 2006).
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Case of convex bodies with positive Gauss curvature

Subtracting two convex hypersurfaces (with positive Gauss curvature)
by subtracting the points corresponding to a same outer unit normal
to obtain a (possibly singular and self-intersecting) hypersurface:

Figure: Hedgehogs as differences of convex bodies of class C 2+
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Interest of hedgehogs

To study convex bodies or hypersurfaces by decomposition into a sum
of hedgehogs.

Ex: Study of a conjectured characterization of the sphere
(Y.M.2 , C. R. Acad. Sci. Paris 2001).

Idea: S = S (0R3 ; r) + (S − S (0R3 ; r)) and study of (S − S (0R3 ; r)) .

To geometrize analytical problems by considering functions as support
functions.

Ex: Geometrical proof of the Sturm-Hurwitz theorem
(Y.M.2 , Arch. Math. 2003).
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Support functions

Every K ∈ Kn+1 is determined by its support function

hK : Sn −→ R

u 7−→ sup {〈x , u〉 x ∈ K} .

K

0

Hh

xh u

h u u

u

A closed convex hypersurface of class C 2+ is determined by its support
function h ∈ C 2(Sn;R) as the envelope Hh ⊂ Rn+1 of the hyperplanes
〈x , u〉 = h(u).
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Parametrization

The natural parametrization of the envelope Hh of the hyperplanes with
equation 〈x , u〉 = h (u) assigns to each u ∈ Sn, the unique solution of the
system {

〈x , u〉 = h(u)
〈x , . 〉 = dhu(.)

,

that is xh(u) = h(u)u+ (∇h)(u). In fact, Hh = xh (Sn) is defined for any
h ∈ C 2(Sn;R). It is called hedgehog with support function h.

At each regular point xh (u) ∈ Hh
u is normal to Hh.

u

0

h u u

xh u

Hh
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Gauss curvature

• The singularities of Hh ⊂ Rn+1 are the very points where the Gauss
curvature κh(u) = 1/ det [Tpxh ] is infinite.

• The curvature function Rh := 1/κh is well-defined and continuous
on Sn, so that the Minkowski Problem arises for hedgehogs.

• A calculation gives: Rh (u) = det [Hij (u) + h (u) δij ], where (Hij (u)) is
the Hessian of h at u with respect to an orthonormal frame on Sn.

Case n = 2

• The curvature function of Hh ⊂ R3 is given by

1/κh = h
2 + h∆2h+ ∆22h

(∆2 is the Laplacian and ∆22 the Monge-Ampère operator, i.e. the sum
and the product of the eigenvalues of Hess h).

• The type of the equation h2 + h∆2h+ ∆22h = 1/κ is given by sgn [1/κ].
So, the PB leads to PDE’s of mixed type for non-convex hedgehogs.
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Key results on the CMP

Major contributions by Minkowski, Alexandrov, Nirenberg, Pogorelov,
Cheng-Yau and others.

Existence of a weak solution:

Theorem (Minkowski - 1903)

If κ ∈ C (Sn;R) is positive and such that∫
Sn

u
κ(u)

dσ(u) = 0

then κ is the Gauss curvature of a unique (up to translation) closed convex
hypersurface Hh of Rn+1.

Strong result:

Theorem (Pogorelov - 1975, Cheng and Yau - 1976)

If κ ∈ Cm (Sn;R), with m ≥ 3, then: ∀α ∈ ]0, 1[ , h ∈ Cm+1,α (Sn;R).
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Existence problem

Existence of a C2-solution:

What are necessary and suffi cient conditions for R ∈ C (Sn;R) to be the
curvature function of some hedgehog H = K−L?

• Integral condition (1)
∫

Sn
uR (u) dσ(u) = 0 is still necessary (but of

course not suffi cient: consider −1).

• Equations with no solution (Y.M.2 , Adv. in Math. 2001):

For every v ∈ S2, R (u) = 1− 2 〈u, v〉2 satisfies (1) and changes sign
cleanly on S2 but is not a curvature function:

there is no h ∈ C 2
(
S2;R

)
such that Rh = R.

• Can the curvature function of a hedgehog Hh be nonpositive on S2 ?
This problem is equivalent to the following conjecture:
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Hedgehog with everywhere nonpositive function

Conjecture (C ) : If S⊂R3 is a closed convex surface of class C 2+ such that

(k1 − c) (k2 − c) ≤ 0,
with c = cst, then S must be a sphere of radius 1/c.

(C ) is equivalent to (H):

(H) If Hh ⊂ R3 is a hedgehog such that Rh ≤ 0, then Hh is a point.
Counter-example to (H) (Y.M.2 , C. R. Acad. Sci. Paris 2001).
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Uniqueness problem

Uniqueness of a C2-solution:

Let R ∈ C (Sn;R) be the curvature function of some hedgehog Hh.
What are necessary and suffi cient conditions on R for Hh to be uniquely
determined by R (up to parallel translations and identifying h with−h)?

In the convex case, the uniqueness

comes from the equality condition in

a well-known Minkowski’s inequality.

This inequality cannot be extended

to hedgehogs and uniqueness is lost.

Figure: Noncongruent smooth (but not analytic)

hedgehogs with the same curvature function

Question. Does there exist any pair of noncongruent analytic hedgehogs
with the same curvature function?

IMJ-Paris (Institute) The Minkowski Problem for hedgehogs 20-24 August 2012 12 / 15



Results relative to the uniqueness

Let H3 be the linear space of C 2-hedgehogs defined up to a translation
in R3.

Theorem (Y.M.
2
, Central European J. Math. 2012). Let H and H′ be C 2-hedgehogs that

are linearly independent in H3. If some linear combination of H and H′ is
of class C 2+, then H and H′ have distinct curvature functions.

Our second result relies on the extension to hedgehogs of the notion of
mixed curvature function.

Theorem (Y.M.
2
, Central European J. Math. 2012). Let H and H′ be analytic (resp.

projective C 2) hedgehogs of R3 that are linearly independent in H3.
If the mixed curvature function of H and H′ does not change sign,
then H and H′ have distinct curvature functions.
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Example of a uniqueness result

The following result relies on the decomposition of hedgehogs into
centered and projective parts.

Theorem (Y.M.
2
, Central European J. Math. 2012). Let H and H′ be C 2-hedgehogs that

are linearly independent in H3 and the centered parts of which are non-
trivial and proportional to one and the same convex surface of class C 2+.
Then H and H′ have distinct curvature functions.

Corollary. Two C 2-hedgehogs of nonzero constant width that are linearly
independent in H3 must have distinct curvature function.

Consequence. The Monge-Ampère equation h2 + h∆2h+ ∆22h = R,
R ∈ C

(
S2;R

)
, cannot admit more than one solution of the form f + r ,

where f ∈ C 2
(
S2;R

)
is antisymmetric and r is a nonzero constant.

(Solutions are identified if they are opposite or if they differ by the restriction to S2 of a linear form on R3)
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Thank you very much

Thank you very much for your attention!
|

Figure: European hedgehog
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