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Abstract. We consider Gauss rigidity and Gauss infinitesimal rigidity for
hedgehogs of R

3 (regarded as Minkowski differences of closed convex sur-
faces of R

3 with positive Gaussian curvature). Besides, we prove under an
appropriate differentiability condition that whenever we perform a defor-
mation of a hedgehog so that its curvature function remains constant, its
algebraic volume also remains constant.
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1. Introduction

In 1813, Cauchy [3] proved (almost rigorously) his famous rigidity theorem:
Any convex polyhedron of R

3 is rigid (that is, no convex polyhedron of R
3

can be continuously deformed so that its faces remain rigid). First examples of
flexible polyhedra were discovered by Bricard [2], but these « Bricard’s flexible
octahedra » are self-intersecting. The question of rigidity of embedded non-con-
vex polyhedra remained open until 1977 when Connelly [5] discovered a first
example of flexible sphere-homeomorphic polyhedron. In the late seventies,
Connelly and Sullivan formulated the so-called « bellows conjecture » stating
that whenever we perform a rigid deformation of a flexible polyhedron P (that
is, a continuous deformation of P that changes only its dihedral angles), the
volume of P remains constant. The first proof of the bellows conjecture was
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given by Sabitov [19]. The second proof by Connelly, Sabitov, and Walz [6]
followed 2 years later.

Rodriguez and Rosenberg [18] gave a rigidity result for polyhedral hedge-
hogs of R

3 (Minkowski differences of convex polyhedra of R
3). Three years

later, Panina [17] gave examples of flexible « virtual polytopes » (that is poly-
hedral hedgehogs) of R

3 which are similar to Bricard’s flexible octahedra and
proved the following refinement of Rodriguez–Rosenberg theorem: a virtual
polytope of R

3 with a convex fan is not flexible.
Dehn [7] proved that any simplicial convex polyhedron P of R

3 is infin-
itesimally rigid: any non-trivial first order deformation of P induces a varia-
tion of its edge lengths. Gauss infinitesimal rigidity of convex polyhedra was
stated and proved by Alexandrov [1]: any non-trivial first order deformation
of a convex polyhedron P induces a variation of its face areas. See e.g. [8] for
details.

Cohn-Vossen [4] proved that smooth closed surfaces of R
3 with every-

where positive Gaussian curvature are rigid. Smooth closed surfaces of R
3

with everywhere positive Gaussian curvature are also infinitesimally rigid [22]
(resp. Gauss infinitesimally rigid [21]), that is every isometric infinitesimal
deformation of such a surface is trivial (resp. rigid with respect to the Gauss-
ian curvature regarded as a function of the outer unit normal). See e.g.
[9, Sections 1 and 2] for details.

In this paper, we consider Gauss rigidity and Gauss infinitesimal rigidity
for hedgehogs of R

3 (regarded as Minkowski differences of closed convex sur-
faces of R

3 with positive Gaussian curvature). As noticed by Izmestiev [8,9],
Gauss rigidity (Gauss infinitesimal rigidity) can be interpreted as uniqueness
(resp. « infinitesimal » uniqueness) in the Minkowski problem, that is in the
problem of prescribing the nth surface area measure of a polytope P of R

n+1

on the unit sphere S
n (resp. the Gaussian curvature of smooth strictly con-

vex closed hypersurface of R
n+1 as a function of the outer unit normal). The

author already studied the uniqueness part of the Minkowski problem extended
to hedgehogs [12,14,15]. In particular, the author presented different ways of
constructing pairs of non-congruent hedgehogs that share the same curvature
function (i.e., inverse of the Gaussian curvature) [15]. This will allow us to
give examples of nontrivial (i.e., distinct from a point) hedgehogs that are not
Gauss infinitesimally rigid.

Assume we have a one parameter family of C2-hedgehogs (Hht
)t∈[0,1], all

with the same curvature function (by ‘C2-hedgehogs’ we mean ‘hedgehogs with
a C2-support function’). We do not know whether they are congruent in R

3.
However, we shall prove a theorem of volume preservation under preserving
curvature deformations:

Under an appropriate differentiability condition of the family with respect
to the parameter, we shall prove that all the hedgehogs of the family considered
have the same algebraic volume.
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Figure 1. Hedgehogs as envelopes parameterized by their Gauss map

2. Basic Definitions C2- Hedgehogs in R
n+1

As is well-known, every convex body K ⊂ R
n+1 is determined by its support

function hK : S
n −→R, where hK(u) is defined by hK(u) = sup{〈x, u〉|x ∈ K},

(u ∈ S
n), that is, as the signed distance from the origin to the support hyper-

plane with normal vector u. In particular, every closed convex hypersurface
of class C2

+ (i.e., C2-hypersurface with positive Gaussian curvature) is deter-
mined by its support function h (which must be of class C2 on S

n [20, p. 111])
as the envelope Hh of the family of hyperplanes with equation 〈x, u〉 = h(u).
This envelope Hh is described analytically by the following system of equations{〈x, u〉 = h(u)

〈x, . 〉 = dhu(.) .

The second equation is obtained from the first by performing a partial differen-
tiation with respect to u. From the first equation, the orthogonal projection of
x onto the line spanned by u is h(u)u and from the second one, the orthogonal
projection of x onto u⊥ is the gradient of h at u (cf. Fig. 1). Therefore, for
each u ∈ S

n, xh(u) = h(u)u + (∇h)(u) is the unique solution of this system.
Now, for any C2-function h on S

n, the envelope Hh is in fact well-defined
(even if h is not the support function of a convex hypersurface). Its natural
parametrization xh : S

n → Hh, u �→ h(u)u + (∇h)(u) can be interpreted as
the inverse of its Gauss map, in the sense that: at each regular point xh(u) of
Hh, u is a normal vector to Hh. We say that Hh is the hedgehog with support
function h (cf. Fig. 2). Note that xh depends linearly on h.

Hedgehogs with a C2-support function can be regarded as the Minkow
ski differences of convex hypersurfaces of class C2

+ (Fig. 3). Indeed, given
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Figure 2. A hedgehog with a C2-support function

Figure 3. Hedgehogs as differences of convex bodies of class C2
+

any h ∈ C2(Sn; R), for all large enough real constant r, the functions h + r
and r are support functions of convex hypersurfaces of class C2

+ such that
h = (h + r) − r.

In fact, we can introduce a more general notion of hedgehogs by regard-
ing hedgehogs of R

n+1 as Minkowski differences of arbitrary convex bodies
of R

n+1 [13]. But in the present paper, we only consider hedgehogs with a
C2-support function and refer to them as ‘C2-hedgehogs’.

3. Gaussian Curvature and Algebraic Volume of C2 -Hedgehogs

Let Hn+1 denote the R-linear space of C2 -hedgehogs defined up to a transla-
tion in the Euclidean linear space R

n+1 and identified with their support func-
tions. Analytically speaking, saying that a hedgehog Hh ⊂ R

n+1 is defined up
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to a translation simply means that the first spherical harmonics of its support
function is not specified.

As we saw before, elements of Hn+1 may be singular hypersurfaces. Since
the parametrization xh can be regarded as the inverse of the Gauss map, the
Gaussian curvature Kh of Hh at xh(u) is given by Kh(u) = 1/det[Tuxh], where
Tuxh is the tangent map of xh at u. Therefore, singularities are the very points
at which the Gaussian curvature is infinite. For every u ∈ S

n, the tangent map
of xh at the point u is Tuxh = h(u)IdTuSn + Hh(u), where Hh(u) is the sym-
metric endomorphism associated with the Hessian of h atu. Consequently, if λ
is an eigenvalue of the Hessian of h at u then λ + h(u) is (up to the sign) one
of the principal radii of curvature of Hh at xh(u) and the so-called ‘curvature
function’ Rh := 1/Kh can be given by

Rh(u) = det[∇ijh(u) + h(u)δij ], (1)

where δij are the Kronecker symbols and (∇ijh(u)) the Hessian of h at u with
respect to an orthonormal frame on S

n.
The case n = 2. From (1), the curvature function Rh := 1/Kh of Hh ⊂ R

3

is given by Rh = (λ1 + h)(λ2 + h) = h2 + hΔ2h + Δ22h, where Δ2 denotes
the spherical Laplacian and Δ22 the Monge-Ampère operator (respectively the
sum and the product of the eigenvalues λ1, λ2 of the Hessian of h). Note that
the so-called ‘mixed curvature function’ of hedgehogs of R

3, that is,

R : H2
3 → C(S2; R)

(f, g) �→ R(f,g) :=
1
2
(Rf+g − Rf − Rg)

is bilinear and symmetric:
(i) ∀(f, g, h) ∈ H3

3,∀λ ∈ R, R(f+λg,h) = R(f,h) + λR(g,h);
(ii) ∀(f, g) ∈ H2

3, R(g,f) = R(f,g).
For any h ∈ H3, we have in particular R−h = Rh. Note that R(1,f) = 1

2 (Δ2h+
2h) is (up to the sign) half the sum of the principal radii of curvature of
Hh ⊂ R

3. The (algebraic) volume of a hedgehog Hh of R
3 is defined by

v(h) =
1
3

∫
S2

hRhdσ,

where σ is the spherical Lebesgue measure on S
2 and Rh the curvature function

[11]. It can be regarded as the integral over R
3 −Hh of the index ih(x) defined

as algebraic intersection number of an oriented half-line with origin x with the
surface Hh equipped with its transverse orientation (number independent of
the oriented half-line for an open dense set of directions).

4. Gauss Infinitesimal Rigidity in the Context of Hedgehogs

In this work, we shall use the Banach spaces Cm, (m ∈ N), that were introduced
by L. Nirenberg in his study of the Minkowski problem in R

3
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[16, p. 380]. The space Cm is defined as follows. The unit sphere S
2 is divided

up into three pairs of regions in each of which one of the following coordinate
systems is defined:

(X,Y ) =
(x

z
,
y

z

)
, (Y,Z) =

(y

x
,
z

x

)
and (Z,X) =

(
z

y
,
x

y

)
,

where (x, y, z) are the standard coordinates in R
3. A function h : S

2 → R

belongs to Cm, (m ∈ N), if in each pair of regions all its partial derivatives
(with respect to the corresponding local coordinates) of order less or equal to
m exist and are continuous. The norm of every h ∈ Cm is defined as the sum
of the suprema of the absolute values of the partial derivatives up to order m
(the suprema being taken with respect to all three pairs of regions).

Definition 1. Let Hh be a C2-hedgehog of R
3. A smooth deformation of Hh

is the data of a differentiable map h̃ : [0, 1] → C2, t �→ ht := h(t, .) such that
h0 = h.

Definition 2. Let Hf be a C2-hedgehog of R
3. An infinitesimal isogauss defor-

mation of Hf is the data of a family (Hf+tg)t∈R of hedgehogs of R
3,

xf+tg : S
2 → Hf+tg ⊂ R

3

u �→ xf (u) + txg(u)

where Hg is a hedgehog of R
3 such that the mixed curvature function R(f,g) :=

1
2 (Rf+g − Rf − Rg) is identically zero on S

2.

Definition 3. Let Hf be a C2-hedgehog of R
3. If every infinitesimal isogauss

deformation (Hf+tg)t∈R of Hf is trivial, that is such that Hg is reduced to
a single point, then the hedgehog Hf will be said to be Gauss infinitesimally
rigid.

Remark 1. A hedgehog Hg is reduced to a single point if, and only if, its sup-
port function g is the restriction to S

2 of a linear form on R
3, which amounts to

saying that its curvature function Rg is identically zero on S
2 [10, Theorem 1].

Therefore, a hedgehog Hf is Gauss infinitesimally rigid if, and only if, we have:

∀g ∈ C2(S2; R), (R(f,g) = 0) =⇒ (Rg = 0).

Remark 2. If a hedgehog Hf ⊂ R
3 is trivial (that is, reduced to a point), then

Hf is not Gauss infinitesimally rigid. Indeed, for every regular C2-hedgehog
Hg ⊂ R

3, we have R(f,g) = 0 although Rg is not identically zero on S
2.
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5. Gauss Infinitesimal Rigidity of Regular C2-Hedgehogs of R
3

Let us recall the proof of the Gauss infinitesimal rigidity (with respect to the
curvature function) of regular C2- hedgehogs of R

3 (that are closed convex sur-
faces of class C2

+ in R
3). It is essentially a rewriting of the proof by Stoker [21]:

Let Hf be a regular C2-hedgehog of R
3. Clearly, the regularity of Hf is equiva-

lent to the strict positivity of its curvature function Rf := 1/Kf . If (Hf+tg)t∈R

defines an isogauss deformation of Hf , then we have [15, Lemma 5]:

0 = R2
(f,g) ≥ Rf .Rg

and hence Rg ≤ 0 on S
2. By taking the origin to be an interior point of the

convex body bounded by Hf in R
3, we may assume without loss of generality

that f > 0 so that fRg ≤ 0 on S
2. Now, by symmetry of the mixed volume of

hedgehogs of R
3 [11], we get:

0 =
∫
S2

gR(f,g)dσ =
∫
S2

fR(g,g)dσ =
∫
S2

fRgdσ,

where σ is the spherical Lebesgue measure on S
2. Therefore, Rg is identically

zero on S
2 which implies that Hg is reduced to a single point by Remark 1. �

6. Relation to Minkowski Problem

In the context of hedgehogs, there is a close connection between Gauss infini-
tesimal rigidity and the uniqueness question in the Minkowski problem. This
is due to the following equivalence:

∀(f, g) ∈ C2(S2; R)2, (Rf = Rg) ⇐⇒ (R(f+g,f−g) = 0).

In [14,15], the author gave examples of pairs of non-congruent hedgehogs
of R

3 having the same curvature function. From each of these examples, we
can deduce examples of nontrivial hedgehogs that are not Gauss infinitesimally
rigid. It is for instance the case of the pair of hedgehogs of R

3 given by:

f(u) :=

{
0 if z ≤ 0
exp(−1/z2) if z > 0

and g(u) :=

{
exp(−1/z2) if z < 0
0 if z ≥ 0,

where u = (x, y, z) ∈ S
2 ⊂ R

3. Indeed, we have clearly R(f,g) = 0. There-
fore, these two nontrivial hedgehogs Hf and Hg are not Gauss infinitesimally
rigid. Only nonanalytic examples are known. The question of knowing whether
there exists a pair of noncongruent analytic hedgehogs of R

3 with the same
curvature function remains open (by ‘analytic hedgehogs’, we mean ‘hedge-
hogs with an analytic support function’). As a consequence, the question of
knowing whether there exist examples of nontrivial analytic hedgehogs that
are not Gauss infinitesimally rigid is also open.
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7. Volume Preservation Under Curvature Preserving
Deformations

Lemma 4. The curvature function R : C2 → C0, h �→ Rh is differentiable on
C2, and:

∀ (f, g) ∈ C2 × C2, dRf (g) = lim
t→0
t�=0

Rf+tg − Rf

t
= 2R(f,g).

Proof of the lemma. Indeed, we have:

∀t ∈ R
∗
+, Rf+tg − Rf = Rf + 2tR(f,g) + t2Rg − Rf

= t(2R(f,g) + tRg),

and hence

lim
t→0
t�=0

Rf+tg − Rf

t
= lim

t→0
t�=0

(2R(f,g) + tRg) = 2R(f,g).

Now, we have:

‖Rf+g − Rf − 2R(f,g)‖C0 = ‖Rg‖C0 = o(‖g‖C2),

which achieves the proof. �

Theorem 5. Let Hh be a C2-hedgehog of R
3. If a smooth deformation of Hh,

say

h̃ : [0, 1] → C2, t �→ ht := h(t, .),

preserves the curvature function (that is, is such that Rht
= Rh for all t ∈

[0, 1]), then it also preserves the algebraic volume:

∀t ∈ [0, 1], v(ht) = v(h).

Proof of Theorem 5. By assumption, the map R ◦ h̃ : [0, 1] → C0 is constant.
Since h̃ is differentiable by assumption and R by Lemma 4, R ◦ h̃ is differen-
tiable and the chain rule gives:

∀t ∈ [0, 1] (R ◦ h̃)′(t) = 2R(
h̃(t),

(
∂h̃
∂t

)
(t)t

).

Therefore, the differentiation yields:

∀t ∈ [0, 1], R(
h̃(t),

(
∂h̃
∂t

)
(t)

) = 0. (2)

Now, for every t0 ∈ [0, 1], we have :

∀t ∈ [0, 1] − {t0},
v(h̃(t)) − v(h̃(t0))

t − t0
=

1
3

∫
S2

h̃(t) − h̃(t0)
t − t0

Rh̃(t0)
dσ
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and hence:

lim
t→t0
t�=t0

v(h̃(t)) − v(h̃(t0))
t − t0

=
1
3

∫
S2

(
∂h̃

∂t

)
(t0)Rh̃(t0)

dσ.

Besides, by symmetry of the mixed volume of hedgehogs [11], we have:

1
3

∫
S2

(
∂h̃

∂t

)
(t0)Rh̃(t0)

dσ =
1
3

∫
S2

h̃(t0)R(
h̃(t0),

(
∂h̃
∂t

)
(t0)

)dσ.

From (2), we then deduce that:

∀t0 ∈ [0, 1], (v ◦ h̃)′(t0) = lim
t→t0
t�=t0

v(h̃(t)) − v(h̃(t0))
t − t0

= 0,

and thus all the hedgehogs of the family (Hht
) have the same (algebraic)

volume. �

Remark 3. Noncongruent hedgehogs that share the same curvature function
may of course have different (algebraic) volumes. It is for instance the case of
the hedgehogs shown on Figure 4 whose support functions f , g are defined on
S

2 by

f(u) :=

{
exp(−1/z2) if z �= 0
0 if z = 0

and g(u) :=

{
sign(z)f(u) if z �= 0
0 if z = 0,

where u = (x, y, z) ∈ S
2 ⊂ R

3.

Figure 4. Same curvature function and different algebraic
volumes
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sons. Arch. Math. 72, 444–453 (1999)

[12] Martinez-Maure, Y.: Hedgehogs and zonoids. Adv. Math. 158, 1–17 (2001)

[13] Martinez-Maure, Y.: Geometric study of Minkowski differences of plane convex
bodies. Can. J. Math. 58, 600–624 (2006)

[14] Martinez-Maure, Y.: New notion of index for hedgehogs of R
3 and applica-

tions. Eur. J. Comb. 31, 1037–1049 (2010)

[15] Martinez-Maure, Y.: Uniqueness results for the Minkowski problem extended to
hedgehog. Cent. Eur. J. of Math. 10, 440–450 (2012)

[16] Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in
the large. Commun. Pure Appl. Math. 6, 337–394 (1953)

[17] Panina, G.: Rigidity and flexibility of virtual polytopes. Cent. Eur. J.
Math. 1, 157–168 (2003)

[18] Rodriguez, L., Rosenberg, H.: Rigidity of certain polyhedra in R
3. Comment.

Math. Helv. 75, 478–503 (2000)

[19] Sabitov, I.Kh.: The volume of a polyhedron as a function of length of its edges.
(Russian). Fund. Prikl. Mat. 2, 305–307 (1996)

[20] Schneider, R.: Convex bodies: the brunn-minkowski theory. Cambridge Univer-
sity Press, Cambridge (1993)



Vol. 63 (2013) Gauss Rigidity and Volume Preservation 983

[21] Stoker, J.J.: Differential geometry. Reprint of the 1969 original. Wiley Classics
Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York
(1989)
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