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Plane Lorentzian and Fuchsian Hedgehogs

Yves Martinez-Maure

Abstract. Parts of the Brunn–Minkowski theory can be extended to hedgehogs,which are envelopes
of families of aõne hyperplanes parametrized by their Gauss map. F. Fillastre introduced Fuchsian
convex bodies,which are the closed convex sets of Lorentz–Minkowski space that are globally invari-
ant under the action of a Fuchsian group. In this paper, we undertake a study of plane Lorentzian
and Fuchsian hedgehogs. In particular, we prove the Fuchsian analogues of classical geometrical
inequalities (analogues that are reversed as compared to classical ones).

1 Introduction

Our main results consist in the Fuchsian analogues of some classical geometrical in-
equalities. _ese results are presented in Subsection 1.3. For the convenience of the
reader,we recall very brie�y some deûnitions and results concerning plane Euclidean
hedgehogs in Subsection 1.1. A short introduction to plane Lorentzian hedgehogs and
ûrst results concerning evolutes and duality in the Lorentz-Minkowski plane L2 are
presented in Subsection 1.2. Finally, Subsection 1.3 presents a study of plane Fuchsian
hedgehogs (convolution of Fuchsian hedgehogs, Brunn-Minkowski and Minkowski
type inequalities, reversed isoperimetric inequality, isometric excess and area of the
evolute, reversed Bonnesen inequality).

1.1 Plane Euclidean Hedgehogs

In the Euclidean plane R2, a hedgehog is the envelope of a family of cooriented lines
L(θ) parametrized by the oriented angle θ ∈ S1 ≃ R/2πZ from e1 = (1, 0) to their
coorienting normal vector u(θ) = (cos θ , sin θ). _ese cooriented lines L(θ) have
equations

(1.1) ⟨x , u(θ)⟩ = h(θ),

where ⟨ ⋅ , ⋅ ⟩ is the usual inner product onR2 and where h ∈ C1(S1;R). Partial diòer-
entiation of (1.1) yields

(1.2) ⟨x , u′(θ)⟩ = h′(θ).

From (1.1) and (1.2), the parametrization of the corresponding hedgehog is

xh ∶S1 → R2 , θ ↦ h(θ)u(θ) + h′(θ)u′(θ).
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_is envelope Hh ∶= xh(S1) is called the (Euclidean) hedgehog with support func-
tion h. If h is only C1, then Hh may be a fractal curve [9]. In this paper, we shall
bemainly interested in C2-hedgehogs, that is, hedgehogs with a C2-support function.
Note that regular C2-hedgehogs ofR2 are strictly convex smooth curves, and that any
C2-hedgehog can be regarded as theMinkowski diòerence of two such convex curves
[10].

H. Geppert was the ûrst to introduce hedgehogs in R2 and R3 (under the respec-
tive German names stützbare Bereiche and stützbare Flächen) in an attempt to ex-
tend parts of the Brunn–Minkowski theory [3]. Many classical inequalities for convex
curves have counterparts for hedgehogs. Of course, a few adaptations are necessary.
In particular, lengths and areas have to be replaced by algebraic versions. For in-
stance,_eorem 1.1 extends the isoperimetric inequality and gives an upper bound of
the isoperimetric deûcit in terms of signed area of the evolute.

_eorem 1.1 ([8, Prop. 6]) For any h ∈ C3(S1;R), we have

(1.3) 0 ≤ l(h)2 − 4πa(h) ≤ −4πa(h′),

where l(h) and a(h) are respectively the signed length and area ofHhandwhere a(h′)
is the signed area of its evolute. In each inequality of (1.3), the equality holds if and only
ifHh is a circle or a point.

In Section 6, we shall prove an analogue of _eorem 1.1 for Fuchsian hedgehogs.
For a study of plane Euclidean hedgehogs, see [10]. An introduction to hedgehogs in
higher dimensions is given in [6].

1.2 Plane Lorentzian Hedgehogs

In this paper, we shall undertake a similar study replacing the Euclidean plane R2

by the Lorentzian plane L2 and the unit circle S1 of R2 by the hyperbolic line H1.
In the Lorentzian plane L2, a spacelike hedgehog is similarly deûned to be the en-
velope of a family of cooriented spacelike lines L(t) parametrized by the oriented
hyperbolic angle t ∈ H1 ≃ R from e2 = (0, 1) to their coorienting normal vector
v(t) = (sinh t, cosh t) (see Section 2). _ese cooriented lines L(t) have equations

(1.4) ⟨x , v(t)⟩L ∶= h(t),

where ⟨x , y⟩L ∶= x1 y1−x2 y2 is the Lorentzian inner product of the vectors x = (x1 , x2)
and y = (y1 , y2) in L2, and where h ∈ C1(R;R). Note that h(t) is the signed distance
from the origin to the support line with coorienting unit normal v(t). Partial diòer-
entiation of (1.4) yields

(1.5) ⟨x , v′(t)⟩L ∶= h′(t).

From (1.4) and (1.5), the parametrization of the corresponding hedgehog is

xh ∶H1 → L2 , t ↦ h′(t)v′(t) − h(t)v(t).

_is envelope Sh ∶= xh(H1) is called the spacelike hedgehog of L2 with support func-
tion h ∈ C1(H1;R). We shall generally restrict discussion to C2-hedgehogs (i.e., with
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a C2-support function). In Section 3, we shall give a study of their evolutes. In par-
ticular, we shall prove the following theorem.

_eorem 1.2 For any h ∈ C3(R;R), the second evolute of Sh is the spacelike hedgehog
with support function h′′:

D(D(Sh)) = Sh′′ ,

whereD(E) denotes the evolute of the envelope E ⊂ L2 of a family of nonlightlike lines
with a C3-support function and no in�ection point.

In Section 3,we shall also introduce timelike hedgehogs of L2, and in Section 4,we
shall give explicit formulas describing a natural duality relationship between spacelike
hedgehogs and timelike hedgehogs.
For a systematic study of curves in the Lorentz–Minkowski plane, we refer the

reader to [7, Subsection 2.3].

1.3 Plane Fuchsian Hedgehogs

Of course, a spacelike hedgehog Sh ⊂ L2 has no reason to be compact. So, in order to
develop a Brunn–Minkowski theory,we shall replaceH1 by its quotient by a Fuchsian
group Γ. In other words:
(i) we identify

SO(1, 1) = {M = (x2 x1
x1 x2

) ∈ M2(R) ∣ x2
2 − x2

1 = 1}

with the hyperbola H = {(x1 , x2) ∈ L2 ∣ x2
2 − x2

1 = 1};
(ii) we take the subgroup Γ of SO(1, 1) that is generated by (sinhT , coshT) ∈ H1 =

{(x1 , x2) ∈ H ∣ x2 > 0} for some T ∈ R∗
+;

(iii) we replaceH1 byH1/Γ ≃ R/TZ.
In practice, any h ∈ C1(H1/Γ;R) will be regarded as a T-periodic function h ∈

C1(R;R). _e Γ-hedgehog with support function h ∈ C1(H1/Γ;R) is then deûned to
be the curve Γh parametrized by

γh ∶R→ L2 , t ↦ h′(t)v′(t) − h(t)v(t).

Note that, for any t ∈ R, we have γh(t + T) = g(T)[γh(t)], where g(T) denotes the
linear isometry of L2 whosematrix in the canonical basis is

(coshT sinhT
sinhT coshT) .

Minkowski diòerences of convex bodies of R2 do not only constitute a real vector
space (H2 ,+, ⋅ ) but also a commutative and associative R-algebra. Indeed,H. Gört-
ler [4, 5] deûned the convolution product of two hedgehogs H f andHg of R2 as the
hedgehog with support function

( f ∗ g)(θ) = 1
2π ∫

2π

0
f (θ − α)g(α) dα,
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for all θ ∈ S1 ≃ R/2πZ, and we can check at once that (H2 ,+, ⋅ , ∗) is then a com-
mutative and associative algebra. _e point of interest is that the convolution product
of two Euclidean hedgehogs inherits many properties of the factors [10, Section 6].
In particular, H. Görtler noticed that the convolution product of two convex bodies
of R2 is still a convex body. _e purpose of Section 5 will be to give a Fuchsian ana-
logue of Görtler’s theorem. Note that Görtler’s algebra should not be confused with
McMullen’s polytope algebra [11].
For every h ∈ C2(H1/Γ;R), the C1-curve

γh ∶ [0, T]→ L2/Γ, t ↦ h′(t)v′(t) − h(t)v(t)
is rectiûable and its length is given by

L(h) ∶= ∫
T

0
∥x′h(t)∥Ldt,

where ∥x∥L ∶=
√

∣⟨x , x⟩∣L for all x ∈ L2. Note that x′h = Rhv′, where Rh ∶= h′′ − h is
the so-called curvature function of Γh . _erefore,

L(h) ∶= ∫
T

0
∣Rh(t)∣dt.

If in this last integral we remove the absolute value to take into account the sign of
the curvature function of Γh ,we obtain the so-called algebraic (or signed) length of Γh ,
which is thus given by

l(h) ∶= ∫
T

0
Rh(t)dt = −∫

T

0
h(t)dt.

Given any h ∈ C2(H1/Γ;R), let ∆h be the oriented closed curve in L2 consisting of
the oriented line segment joining the origin to γh(0), followed by the oriented curve
Γh and ûnally the oriented line segment joining γh(T) to the origin. Denote by (∆h)−
the curve obtained from ∆h by taking the opposite orientation (see Figure 1). Deûne
the algebraic (or signed) area of Γh to be the algebraic area bounded by (∆h)−, that is,

a(h) ∶= ∫
L2

ih(x)dλ(x),

where λ is the Lebesguemeasure and ih(x) the winding number of x with respect to
(∆h)− for x ∈ L2 − (∆h)− (we let ih(x) = 0 for x ∈ (∆h)−). An easy straightforward
calculation gives

a(h) = 1
2 ∫(∆h)−

x1dx2 − x2dx1 =
1
2 ∫

T

0
h(t)Rh(t)dt =

1
2 ∫

T

0
(h2 + (h′)2)(t)dt.

In the Fuchsian case,many geometric inequalitieswill be reversed. A ûrst example
is given by the following obvious result.

Proposition 1.3 _e map
√
a∶C2(H1/Γ;R) → R+ , h z→

√
a(h) is a norm as-

sociated with a scalar product (h, k) z→ a(h, k). In particular, for any (h, k) ∈
C2(H1/Γ;R)2, we have

√
a(h + k) ≤

√
a(h) +

√
a(k)(1.6)
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Figure 1: _e curve (∆h)
− when h(t) ∶= 1 + cos(2πt).

and

a(h, k)2 ≤ a(h) a(k),(1.7)

with equalities if and only if Γh and Γk are homothetic (here, “homothetic” means that
there exists (λ, µ) ∈ R2 − {(0, 0)} such that λh + µk = 0).

Indeed, inequality (1.6) (resp. (1.7)) has to be compared with the Brunn–Minkow-
ski inequality (resp. Minkowski inequality) in R2 (e.g., see [13, Section 7]). For any
pair (H,K) of convex bodies of R2, we have

√
a(H + K) ≥

√
a(H) +

√
a(K) and a(H,K)2 ≥ a(H) a(K),

where a(L) (resp. a(H,K)) is the area (resp. themixed area) of L (resp. (H,K)). By
taking k = −1 (that is, Γk = H1) in (1.7), we obtain the following reversed isoperimetric
inequality

(1.8) a(h) ≥ l(h)2

2T
,

with equality if and only if Γh andH1 are homothetic (that is, h is constant). In Section
6, another reversed geometric inequality will be given by the following analogous of
_eorem 1.1 for Fuchsian hedgehogs.
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_eorem 1.4 Let T ∈]0, 2π]. For any T-periodic h ∈ C3(R;R), we have

0 ≤ 2Ta(h) − l(h)2 ≤ 2Ta(h′),

where l(h) and a(h) are respectively the signed length and area of Γh and a(h′) is the
signed area of its evolute.

Note that 2Ta(h) − l(h)2 provides a measure of how far Γh deviates from a
Γ-hedgehog given by a spacelike branch of a hyperbola. A lower bound of the isoperi-
metric excess a(h)− l(h)2/2T is given by the following reversed Bonnesen inequality,
which we shall prove in Section 7.

_eorem 1.5 (Reversed Bonnesen inequality) For any T-periodic h ∈ C2(R;R),

1
2T

(R − r)2 ≤ a(h) − l(h)2

2T
,

where l(h) and a(h) are respectively the signed length and area of Γh and where r ∶=
min0≤t≤T(−h(t)) and R ∶= max0≤t≤T(−h(t)). Furthermore, the equality holds if and
only if R = r.

Recall thatBonnesen’s sharpening of the isoperimetric inequality for a convex body
K with non-empty interior in R2 reads as follows:

L2 − 4πA ≥ π2(R − r)2 ,

where L and A are respectively the perimeter and the area of K and where r and R
stand respectively for the inradius and the circumradius of K (e.g., see [1, pp. 108–
110]).
For geometric inequalities involving hedgehogs in higher dimensions, see [8] for

the Euclidean case and [2] for the Fuchsian case.

2 Preliminaries

In this paper, the notation x = (x1 , x2) means that (x1 , x2) are the coordinates of
x ∈ R2 with respect to the canonical basis ofR2. _e Lorentzian plane L2 is the vector
space R2 endowed with the pseudo-scalar product ⟨x , y⟩L ∶= x1 y1 − x2 y2, for any x =
(x1 , x2) and y = (y1 , y2). For any x ∈ L2, deûne the norm of x by ∥x∥L =

√
∣⟨x , x⟩L ∣

and the sign of x by ε(x) = sgn(⟨x , x⟩L),where sgn denotes the sign function: sgn(t)
is 1, 0, or −1 if t is positive, zero, or negative, respectively. A nonzero vector x ∈ L2

is said to be spacelike if ε(x) = 1, lightlike if ε(x) = 0, and timelike if ε(x) = −1.
Let e2 = (0, 1). A timelike vector x = (x1 , x2) ∈ L2 is said to be a future vector if
⟨x , e2⟩L < 0, that is, if x2 > 0. We shall denote by F the set of all future timelike
vectors:

F = {x = (x1 , x2) ∈ L2 ∣ ⟨x , x⟩L < 0 and x2 > 0}.
_e hyperbolic lineH1 is the set of all unit future timelike vectors:

H1 ∶= {x = (x1 , x2) ∈ L2 ∣ ⟨x , x⟩L = −1 and x2 > 0}.
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In other words, H1 is the upper branch of the hyperbola x2
2 = x2

1 + 1. It will play in
L2 the same role as the one the unit circle S1 plays in the Euclidean plane R2. For
any t ∈ R, let g(t) be the linear isometry of the Lorentzian plane whosematrix in the
canonical basis of R2 is

(cosh t sinh t
sinh t cosh t)

_ese isometries g(t) constitute the group G of hyperbolic translations of L2. Note
that G is an abelian subgroup of O(1, 1) and that g∶R → G, t ↦ g(t) is a group
isomorphism: g(s + t) = g(s)g(t) for all s, t ∈ R. _e hyperbolic line H1 can be
regarded as the orbit of e2 under the action of G. Any v(t) = (sinh t, cosh t) ∈ H1 is
identiûed with the unique t ∈ R such that g(t)(e2) = v(t). For any x , y ∈ H1, the
oriented hyperbolic angle from x to y is the unique t such that g(t)(x) = y.
A (smooth) curve in L2 is a diòerentiable map c∶ I ⊂ R → L2, where I is an open

interval. A curve c∶ I → L2 is said to be regular at t if c′(t) /= 0. _e curve is said to be
regular if it is regular at any t ∈ I. It is is said to be spacelike (resp. lightlike, timelike) at
t if c′(t) is a spacelike (resp. null or lightlike, timelike) vector. It is said to be spacelike
(resp. timelike) if it is spacelike (resp. timelike) at any t ∈ I.

Let σ ∶ L2 → L2 be the anti-isometric involutive operator given by σ(x1 , x2) =
(x2 , x1). For any x ∈ L2 − {(0, 0)}, let x⊥ ∶= ε(x)σ(x). For any nonlightlike x ∈
L2 − {(0, 0)}, (x , x⊥) is a positively oriented (i.e., endowed with the orientation of
the canonical basis of R2) basis of L2.

Let c∶ I → L2 be a spacelike (resp. timelike) curve of class C2. At any point of
c∶ I → L2, we can deûne the oriented Frenet frame (T(t),N(t)) consisting of Frenet
vectors

T(t) ∶= c′(t)
∥c′(t)∥L

and N(t) ∶= T(t)⊥ .

If c∶ I → L2 is parametrized by the pseudo arc length s (that is, if ∥c′(s)∥L = 1 for
all s ∈ I), then the algebraic curvature of c is deûned to be the function κ such that
T ′(s) = κ(s)N(s). If it is not the case, a straightforward computation using the fact
that ds/dt = ∥c′(t)∥L shows that the algebraic curvature is given by

κ(t) ∶= ⟨c′(t), σ(c′′(t))⟩L
∥c′(t)∥3

L
.

If c∶ I → L2 is a spacelike hedgehog xh ∶H1 → L2 with support function h ∈ C3(R;R),
then c′ = x′h = Rhv′, where Rh ∶= h′′ − h is the so-called curvature function of Sh . In
this case, we obtain

T = sgn(Rh)v′ , N = sgn(Rh)v , and κ(t) = ∣Rh ∣−1 .

3 Evolute

3.1 Evolute of a Spacelike Hedgehog Sh of L2

In this subsection, h ∈ C3(R;R). _e evolute of Sh can be deûned in two diòerent
but equivalent ways: as an envelope or as a locus.
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3.1.1 Evolute of Sh as the envelope of its normal lines

For every t ∈ R, the support line Lh(t), with coorienting unit normal vector v(t) ∶=
(sinh t, cosh t), has equation ⟨x , v(t)⟩L ∶= h(t). Let Nh(t) be the line through x that
is orthogonal (with respect to the Lorentzian metric ⟨ ⋅ , ⋅ ⟩L) to Lh(t) in L2. It will be
called the normal line to Hh at xh(t). _is normal line has equation ⟨x , v′(t)⟩L ∶=
h′(t).
Deûne the evoluteD(Sh) of the spacelike hedgehog Sh ⊂ L2 to be the envelope of

the family (Nh(t))t∈R of its normal lines. _is evoluteD(Sh) is thus the curve in L2

parametrized by ch ∶R → L2 , t z→ ch(t), where ch(t) is the unique solution of the
system

⎧⎪⎪⎨⎪⎪⎩

⟨x , v′(t)⟩L ∶= h′(t)
⟨x , v(t)⟩L ∶= h′′(t),

that is, ch(t) = h′(t)v′(t) − h′′(t)v(t).

3.1.2 Evolute of Sh as the locus of its centers of curvature

_e evolute of the spacelike hedgehog Sh ⊂ L2 can also be deûned as the locus of all
its centers of curvature. Recall that x′h(t) = Rh(t)v′(t) for all t ∈ H1 ≃ R. Since
Sh ∶= xh(H1) is an envelope parametrized by its coorienting unit normal vector ûeld,
the center of curvature of Sh at xh(t) is deûned to be ch(t) ∶= xh(t) − Rh(t)v(t) =
h′(t)v′(t) − h′′(t)v(t) for all t ∈ H1. Of course, if xh is regular at t, then

ch(t) = xh(t) −
1

κ(t)N(t),

but the center of curvature ch(t) is well deûned even if x′h(t) = 0.

3.2 Timelike Hedgehogs of L2 and their Evolutes

3.2.1 Definitions

We can also deûne timelike hedgehogs of L2. _e timelike hedgehog with support
function h ∈ C1(R;R) is deûned to be the envelope Th of the family (L′h(t))t∈R of
cooriented timelike lines with equation

(3.1) ⟨x , v′(t)⟩L ∶= h(t),

v′(t) = (cosh t, sinh t) being the unit coorienting normal vector of L′h(t). Partial
diòerentiation of (3.1) yields

(3.2) ⟨x , v(t)⟩L ∶= h′(t).

From (3.1) and (3.2), the parametrization of Th is

yh ∶R→ L2 , t ↦ h(t)v′(t) − h′(t)v(t).

Note that y′h(t) = −Rh(t)v(t) for all t ∈ R,where Rh ∶= h′′−h. _e evoluteD(Th) of
a timelike hedgehog Th ⊂ L2 is deûned to be the envelope of the family of its normal
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lines (i.e., of the lines with equation ⟨x , v(t)⟩L ∶= h′(t)) or, equivalently, the locus of
its centers of curvature,

dh(t) ∶= yh(t) − (−Rh(t)v′(t)) = h′′(t)v′(t) − h′(t)v(t), (t ∈ R).

3.2.2 Relationship between Sh = xh(R) and Th = yh(R)

Let Σ be the anti-isometric involutive operator of L2 that is given by Σ(x) = −σ(x)
for all x ∈ L2. Note that Σ ○ v = −v′ and Σ ○ v′ = −v.

Proposition 3.1 For any h ∈ C1(R;R), the spacelike hedgehog Sh and the timelike
hedgehog Th are related by Th = Σ(Sh) and Sh = Σ(Th).

Proof Indeed, their respective parametrizations xh ∶= h′v′ − hv and yh ∶= hv′ − h′v
are such that yh = Σ ○ xh and xh = Σ ○ yh .

3.3 Second Evolute

Proposition 3.2 For any h ∈ C2(R;R), the evolute of the spacelike hedgehog Sh (resp.
of the timelike hedgehog Th) can be given by

D(Sh) = Σ(Sh′) (resp. D(Th) = Σ(Th′))

and hence by
D(Sh) = Th′ (resp. D(Th) = Sh′)

from the previous proposition. See Figure 2 for an illustration.

Proof Indeed, ch ∶= h′v′−h′′v (resp. dh ∶= h′′v′−h′v) satisûes Σ○ch = −h′v+h′′v′ =
xh′ (resp. Σ ○ dh = −h′′v + h′v′ = yh′) and hence ch = Σ ○ xh′ (resp. dh = Σ ○ yh′).

Corollary 3.3 For any h ∈ C3(R;R), the second evolute of the spacelike hedgehog Sh
(resp. of the timelike hedgehog Th) is simply the spacelike (resp. timelike hedgehog) with
support function h′′:

D2(Sh) ∶=D(D(Sh)) = Sh′′ (resp. D2(Th) =D(D(Th)) = Th′′).

4 Duality

Let c∶ I ⊂ R→ L2 be a spacelike or timelike curve in L2 and let pc ∶ I → L2 be its pedal
curve. For any t ∈ I, pc(t) is the foot of the perpendicular from the origin to the
tangent line to c at c(t). Note that, replacing tangent lines by support lines, we can
deûne the pedal curve of a spacelike (resp. timelike) hedgehog even if xh (resp. yh) is
not regular. Assume that ∥c(t)∥L .∥pc(t)∥L /= 0 for all t ∈ I. Deûne the star curve of c
to be the curve c∗∶ I ⊂ R→ L2 given by c∗ ∶= i ○ pC , where

i(x) ∶= ε(x) x
∥x∥2

L
for all x ∈ L2 such that ∥x∥L /= 0



10 Y. Martinez-Maure

Figure 2: Sh and Th′ if h(t) ∶= cosh(2t).

(recall that ε(x) ∶= sgn(⟨x , x⟩L)). If c∶ I → L2 is the restriction of a spacelikehedgehog
xh (resp. a timelike hedgehog yh) to I, then pc = −hv (resp. pc = hv′), and, assuming
that h.∥xh∥L /= 0 (resp. h.∥yh∥L /= 0), we can deûne its star curve in the same way.

Proposition 4.1 Let I be an open interval of R. If c∶ I → L2is the restriction to I
of a spacelike hedgehog xh (resp. a timelike hedgehog yh) such that h.∥xh∥L /= 0 (resp.
h.∥yh∥L /= 0) on I, then (c∗)∗ = c.

Proof If c = xh (resp. c = yh), then pc = −hv (resp. pc = hv′). _us,

x∗h =
v
h

( resp. y∗h =
v′

h
) .

Diòerentiation gives

(x∗h)′ =
yh

h2 ( resp. (y∗h)′ = −
xh

h2 ) .

Now

x∗h =
h′yh − hxh

h(h2 − (h′)2) ( resp. y∗h =
hyh − h′xh

h(h2 − (h′)2)) .

_erefore

px∗h =
xh

(h′)2 − h2 ( resp. py∗h
= yh

h2 − (h′)2 ) ,

and hence (x∗h)∗ = xh (resp. (y∗h)∗ = yh).



Plane Lorentzian and Fuchsian Hedgehogs 11

Deûnition 4.2 For any h ∈ C1(R;R) such that h.∥xh∥L /= 0 (resp. h.∥yh∥L /= 0), we
shall say that S∗h ∶= x∗h(R) (resp. T∗h ∶= y∗h(R)) is the dual curve of the spacelike (resp.
timelike) hedgehog Sh (resp. Th).

5 Convolution

Diòerences of convex bodies of R2 do not only constitute a real vector space
(H2 ,+, ⋅ ) but also a commutative and associative R-algebra. As noticed by Görtler
[4, 5], we can deûne the convolution product of two hedgehogs H f andHg of R2 as
the hedgehog with support function

( f ∗ g)(θ) = 1
2π ∫

2π

0
f (θ − α)g(α) dα,

for all θ ∈ S1 ≃ R/2πZ and we can check at once that (H2 ,+, ⋅ , ∗) is then a com-
mutative and associative algebra. _e point of interest is, of course, that the convo-
lution product inherits many properties of the factors [10, Section 6]. In particular,
H. Görtler noticed that the convolution product of two plane convex bodies is still a
plane convex body. _e purpose of this section is to give a similar result for Fuchsian
hedgehogs.

Let h ∈ C2(H1;R). Recall that x′h(t) = Rh(t)v′(t) for all t ∈ H1 Hence the space-
like hedgehog Sh = xh(H1) is a regular curve if and only if its curvature function Rh
is everywhere nonzero. In that case, Sh is said to be convex.

Deûnition 5.1 Let h ∈ C2(H1;R). _e spacelike hedgehog Sh is said to be convex
if its curvature function Rh ∶= h′′ − h is everywhere nonzero on H1. It is said to be
future convex (resp. past convex) if its curvature function is everywhere positive (resp.
negative) on H1.

Deûnition 5.2 Let h ∈ C2(H1/Γ;R). _e Γ-hedgehog Γh is said to be a Γ-hedgehog
of class C2

+ of F = {x = (x1 , x2) ∈ L2 ∣ ⟨x , x⟩L < 0 and x2 > 0} if h < 0 and Rh > 0.

Remark 5.3 A Γ-hedgehog of classC2
+ of F can indiòerently be regarded as a convex

curve on F or as a convex closed curve on F/Γ.

Deûnition 5.4 Let Γf and Γg be Γ-hedgehogswhose respective support functions f
and g are in C1(H1/Γ;R). _e convolution of Γf and Γg is the Γ-hedgehog Γf∗g with
support function

( f ∗ g)(t) = −∫
T

0
f (t − s)g(s) ds for all t ∈ [0, T].

_e operation of convolution of Γ-hedgehogs is of course commutative, associative,
and distributive over addition. Here is an analogous result of Görtler’s theorem.

Proposition 5.5 Let Γf and Γg be Γ-hedgehogs whose respective support functions f
and g are in C2(H1/Γ;R). If Γg is a Γ-hedgehog of class C2

+ of F and if f is negative,
then Γf∗g is a Γ-hedgehog of class C2

+ of F.
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Proof If f < 0, g < 0 and Rg > 0, then ( f ∗ g) < 0 and R f∗g > 0. Indeed, the ûrst
inequality is trivial and an easy computation shows that

R f∗g(t) = ( f ∗ g)′′(t) − ( f ∗ g)(t) = ( f ∗ g′′)(t) − ( f ∗ g)(t)

= ( f ∗ (g′′ − g))(t) = ( f ∗ Rg)(t) = −∫
T

0
f (t − s)Rg(s) ds

is positive for all t ∈ [0, T], since f < 0 and Rg > 0.

Corollary 5.6 If Γf and Γg are Γ-hedgehogs of class C2
+ of F, then Γf∗g is also a Γ-

hedgehog of class C2
+ of F.

6 Isometric Excess and Area of the Evolute

_e following theorem is analogous to _eorem 1.1 for Fuchsian hedgehogs.

_eorem 6.1 Let T ∈]0, 2π]. For any T-periodic h ∈ C3(R;R),

0 ≤ 2Ta(h) − l(h)2 ≤ 2Ta(h′),

where l(h) and a(h) are respectively the signed length and area of Γh and a(h′) the
signed area of its evolute.

Proof _e ûrst inequality is simply the isoperimetric inequality (1.8). Let us prove
the second one. First note that

a(h) − a(h′) = 1
2
(∫

T

0
h2dt − ∫

T

0
(h′′)2dt) .

Let an( f ) and bn( f ) denote the Fourier coeõcients of f ∈ C1(R;R):

a0( f ) ∶=
1
T ∫

T

0
f (t)dt,

an( f ) ∶=
2
T ∫

T

0
f (t) cos nωt dt,

bn( f ) ∶=
2
T ∫

T

0
f (t) sin nωt dt,

where ω ∶= 2π/T and n ∈ N∗. Recall that an(h′′) = −(nω)2an(h) and bn(h′′) =
−(nω)2bn(h) for all n ∈ N∗. Parseval’s equality gives

1
2 ∫

T

0
(h2 − (h′′)2)(t)dt = T

2
a0(h)2 + T

4

+∞

∑
n=1

(1 − (nω)4)(an(h)2 + bn(h)2).

Now the sum in the right-hand side is obviously nonpositive, so that

1
2 ∫

T

0
(h2 − (h′′)2)(t)dt ≤ T

2
a0(h)2 = l(h)2

2T
.

Hence 2Ta(h) − l(h)2 ≤ 2Ta(h′), which achieves the proof.
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Remark 6.2
(a) For T ∈ ]0, 2π[, the equality 2Ta(h) − l(h)2 = 2Ta(h′) holds if and only if h

is constant.
(b) For T = 2π, the equality 2Ta(h)− l(h)2 = 2Ta(h′)may hold for nonconstant

h ∈ C3(H1/Γ;R). Consider, for instance, h(t) ∶= cos t.
(c) _e assumption T ∈]0, 2π] is necessary even ifwe restrict to Γ-hedgehogs that

are Γ-hedgehogs of classC2
+ of F. Consider, for instance, h(t) ∶= −2+cos( 2π

7 t),which
is such that h < 0 and Rh > 0.

7 Reversed Bonnesen Inequality

Let K be a convex body with non-empty interior in R2. In the 1920’s, T. Bonnesen
gave various sharpenings of the isoperimetric inequality

A ≤ L2

4π
,

where L and A denote respectively the perimeter and the area of K. In particular, he
proved the inequality

(7.1) L2 − 4πA ≥ π2(R − r)2 ,

where r and R are respectively the inradius and the circumradius of K (i.e., the radii
of the largest inscribed and the smallest circumscribed circles of the boundary of K,
respectively). He further proved that the equality holds in (7.1) if and only if R = r, i.e.,
if K is a disc. _e proof by Bonnesen is reproduced in [1, pp. 108-110]. For a survey
of Bonnesen-type inequalities in Euclidean spaces, we refer the reader to [12]. Let us
prove the following reversed Bonnesen inequality for Fuchsian hedgehogs.

_eorem 7.1 For any T-periodic h ∈ C2(R;R),
1

2T
(R − r)2 ≤ a(h) − l(h)2

2T
,

where l(h) and a(h) are respectively the signed length and area of Γh and where r ∶=
min0≤t≤T(−h(t)) and R ∶= max0≤t≤T(−h(t)). Furthermore, the equality holds if and
only if R = r.

Proof Since −h∶R → R is continuous, there exists (t0 , t1) ∈ [0, T]2 such that r =
−h(t0) and R = −h(t1). _us we have

(R − r)2 = (h(t1) − h(t0))2 = (∫
t1

t0
h′(t)dt)

2
.

By the Cauchy–Schwarz inequality, we deduce that

(R − r)2 ≤ ∣t1 − t0∣∫
max(t0 ,t1)

min(t0 ,t1)
h′(t)2dt ≤ T ∫

T

0
h′(t)2dt.

Now

∫
T

0
h′(t)2dt = 2a(h) − ∫

T

0
h(t)2dt
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and again by the Cauchy-Schwarz inequality

l(h)2 = (∫
T

0
h(t)dt)

2
≤ T ∫

T

0
h(t)2dt.

_erefore (R − r)2 ≤ 2Ta(h) − l(h)2, which achieves the proof of the reversed Bon-
nesen inequality. Finally, considering equality cases at each step, we immediately see
that the equality holds if and only if h is constant, which completes the proof.
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