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1. Introduction and statement of main results

Trapped surfaces were introduced in general relativity by R. Penrose [12] to study sin-
gularities of spacetimes. They appeared in a natural way earlier in the work of Blaschke, 
in the context of conformal and Laguerre geometry [1]. These surfaces play an extremely 
important role in general relativity where they are of central importance in the study 
of black holes, those regions of spacetime where everything is trapped, and nothing can 
escape, even light. A closed embedded spacelike 2-surface of a 4-dimensional spacetime is 
said to be trapped if its mean curvature vector is everywhere timelike. The limiting case 
of marginally trapped surfaces, i.e. surfaces whose mean curvature vector is everywhere 
lightlike, play the role of apparent horizons of black holes. Mathematically, marginally 
trapped surfaces are regarded as spacetime analogues of minimal surfaces in Riemannian 
geometry. Even though they received considerable attention both from mathematicians 
and physicists, these surfaces are still not very well understood. For a recent survey on 
marginally trapped surfaces, see the book by B.Y. Chen [3].

What we will try to argue in this paper, and to show through fundamental examples, 
is that:

(A very huge class of) marginally trapped surfaces arise naturally from a ‘lightlike 
co-contact structure’, exactly in the same way as Legendrian fronts arise from a contact 
one (by projection of a Legendrian submanifold to the base of a Legendrian fibration), 
and there is an adjunction relationship between both notions.

In addition, a huge class of marginally trapped surfaces correspond by adjunction to 
hedgehogs (envelopes parametrized by their Gauss map) and can thus benefit directly 
from contributions of hedgehog theory, which can be seen as an extension of the Brunn–
Minkowski one (see e.g. [10]). This correspondence is naturally promising in terms of 
new geometric inequalities, and we know how important geometric inequalities are in 
gravitation. We will give examples of geometric inequalities involving hedgehogs and 
marginally trapped surfaces in Subsection 1.2.

In order to explain precisely what we mean here by a ‘lightlike co-contact structure’, 
let us begin by the presentation of a fundamental example in the 4-dimensional Lorentz–
Minkowski space L4. This example will be detailed in Subsection 1.3.

1.1. Marginally trapped hedgehogs or co-hedgehogs in L4

1.1.1. Characterization and definitions in L4

For simplicity, we will restrict our presentation to surfaces in L4 but our results 
extend, without much change, to higher dimensions. To any h ∈ C∞ (

S2;R
)

corresponds 
the envelope Hh of the family (Ph (u))u∈S2 of cooriented planes of R3 with equation (E)
〈x, u〉 = h (u), where 〈., .〉 is the standard scalar product on R3. We say that Hh is the 
hedgehog with support function h. From (E) and the contact condition 〈dx, u〉 = 0, we 
deduce
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{
〈x, u〉 = h (u)
〈x, du〉 = dhu,

for all u ∈ S2. Thus, it appears that Hh can be parametrized by xh : S2 → R3, u �→
h(u)u +(∇h) (u), where (∇h) (u) stands for the gradient of h at u. The parametrization 
xh can be interpreted as the inverse of its Gauss map (if u is a regular point of xh, then u
is normal to Hh at xh (u)). Note that (Hh+t)t∈R

is a family of parallel hedgehogs in R3: 
for all (u, t) ∈ S2 × R, xh+t (u) = xh (u) + tu.

Now, we claim that:

To the differential dh of h corresponds naturally a ‘marginally trapped hedgehog’ of 
the Lorentz Minkowski 4-space L4 =

(
R4, 〈., .〉L

)
via a ‘lightlike co-contact condition’.

Here, the pseudo-scalar product 〈., .〉L is defined by

〈(x, t) , (x′, t′)〉L := x1x
′
1 + x2x

′
2 + x3x

′
3 − tt′,

for all (x, t) := ((x1,x2, x3) , t) and (x′, t′) :=
((
x′

1,x
′
2, x

′
3
)
, t′

)
in R4 = R3 × R. Indeed, 

dh determines the family (Lh+t (u))(u,t)∈S2×R
of oriented null lines of L4 defined by:

∀ (u, t) ∈ S2 × R, Lh+t (u) = {lh+t (u)} + R (u,−1) ,

where lh+t (u) := (∇h (u) , h (u) + t); and this family of null lines determines a 
‘marginally trapped hedgehog’, which is unique up to translations parallel to the time 
axis, via a ‘lightlike co-contact condition’:

Theorem 1 (Determination of marginally trapped hedgehogs of L4 by 1-jet and co-contact 
condition). For all t ∈ R,

(i) there is a unique map x : S2 → L4 of class C∞ satisfying x (u) ∈ Lh+t (u) for all 
u ∈ S2 together with the ‘lightlike co-contact condition’

〈δ (dx) , uL〉L = 0,

where δ is the Hodge codifferential on S2 (i.e. the formal adjoint to the exterior 
differentiation d) and uL := 1√

2 (u,−1), namely

x = xlh+t
: S2 → L4, u �→ lh+t (u) + δ (∂h) (u)uL,

where ∂h (u) := dh/
√

2;
(ii) this map x : S2 → L4 is such that x∗g = 1

4 (R1 −R2)2 gS, where gS is the standard 
metric on S2, g the first fundamental form on x 

(
S2), x∗g the pullback of g along 

x and R1 (u) , R2 (u) the principal radii of curvature of Hh at xh (u);
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(iii) for all u ∈ S2, Δx (u) ∈ RuL, where Δ is the Hodge Laplacian on S2, so that 
the mean curvature vector of x 

(
S2) at x (u), say 

−→
Hx (u), is parallel to the lightlike 

vector −→uL whenever xh (u) is not an umbilical point of Hh, that is:

∀u ∈ S2�
{
u ∈ S2 |R1 (u) = R2 (u)

}
, −→

Hx (u) ∈ R−→uL.

Of course, the Hodge–Laplacian of a C∞-map x : S2 → L4, u �→ (xi (u))4i=1 is un-
derstood to be the vector function ΔX : S2 → L4, u �→ (Δxi (u))4i=1, where Δxi is the 
Hodge–Laplacian of the coordinate function xi in the intrinsic metric on S2, (1 ≤ i ≤ 4).

Definition 1. For all t ∈ R, we call Hlh+t
:= xlh+t

(
S2) the (marginally trapped) hedgehog 

with support 1-jet lh+t : S2 → J1 (S2), u �→ (∇h (u) , h (u) + t).

Note that 
√

2 ∂ stands for the Hodge–Dirac operator D = d + δ on S2 and that the 
datum of ∂h := dh/

√
2 is equivalent to the one of the family of 1-jets (lh+t)t∈R

, where 
lh+t := (∇h, h + t). All the marginally trapped hedgehogs of the family 

(
Hlh+t

)
t∈R

are 

equal up to translations parallel to the time axis R
−→
∂t in L4, where 

−→
∂t :=

(−→0R3 , 1
)
, since: 

for all (u, t) ∈ S2 ×R, xlh+t
(u) = xlh (u)+ t

−→
∂t . Therefore, this family can be regarded as 

one and only one marginally trapped hedgehog defined up to a translation parallel to the 
time axis R

−→
∂t in L4. This hedgehog will be denoted by H∂h, where ∂h := dh/

√
2. The 

factor 1/
√

2 is chosen so that the hedgehog with support function ∂2h := ∂ (∂h) coincides 
with the mean evolute of Hh (see Subsection 1.2 for details and a precise definition of 
the mean evolute).

These remarks make natural the following definition:

Definition 2. We call H∂h the marginally trapped hedgehog (or, co-hedgehog) of L4 with 
support differential ∂h := dh/

√
2. Anyone of the marginally trapped hedgehogs Hlh+t

, 
(t ∈ R), will be regarded as a representative of H∂h in L4. We will say that H∂h is the 
co-evolute of Hh in L4.

Thus, once the lightlike ‘co-contact condition’ 〈δ (dx) , uL〉L = 0 is fixed, the 
(co)hedgehog H∂h is defined in L4 as the ‘co-envelope’ of the family of oriented null 
lines determined by its support differential ∂h in the same way as, once the contact con-
dition 〈dx, u〉 = 0 is fixed, the hedgehog Hh is defined in R3 as the envelope of the family 
of cooriented planes determined by its support function h. Of course, it is important to 
note that Hh and H∂h are not assumed to be embedded surfaces of respectively R3 and 
L4: Hh and H∂h may possibly be singular and self-intersecting. Note that regularity 
assumptions on the support function h can be weakened in many cases. For instance, to 
define the co-envelope H∂h in L4 we only need to assume that h is of class C2 on S2.

In everyday language, hedgehogs are spiny mammals. Note that Langevin, Levitt and 
Rosenberg chose to call Hh a hérisson [6], which is the French name for hedgehog, to 
illustrate the fact that, in each direction u ∈ S2, there is one and only one ‘normal’ 
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Nh (u) := xh (u) + Ru pointing out from Hh (as, in each direction, a unique spine is 
pointing out from the skin of the spiny mammal). Similarly, it is worth pointing out, 
that, in each null direction uL := 1√

2 (u,−1)) ∈
(
S2 × {−1}

)
�
√

2 ⊂ S3, there is one and 

only one null line Lh (u) := x∂h (u) + RuL that is normal to the co-envelope H∂h in L4.

1.1.2. Geometrical interpretation of co-hedgehogs of L4

First, let us remind some basic facts about the curvature of hedgehogs of R3. Since the 
parametrization xh : S2 → Hh ⊂ R3 can be regarded as the inverse of the Gauss map, 
the Gauss curvature Kh of Hh at xh (u) is given by Kh(u) = 1/ det [Tuxh], where Tuxh

is the tangent map of xh at u. Therefore, singularities of Hh are the points at which its 
Gauss curvature becomes infinite. For all u ∈ S2, the tangent map of xh at the point u is 
Tuxh = h (u) IdTuS

2 +Hu
h , where Hu

h is the symmetric endomorphism associated with the 
Hessian of h at u. Consequently, if λ1 (u) and λ2 (u) are the eigenvalues of the Hessian 
of h at u then R1 (u) := (λ1 + h) (u) and R2 (u) := (λ2 + h) (u) can be interpreted as 
the principal radii of curvature of Hh at xh (u), and the so-called curvature function
Rh := 1/Kh is given by

Rh (u) = det [Hij (u) + h (u) δij ] = (R1R2) (u) ,

where δij are the Kronecker symbols and (Hij (u)) the Hessian of h at u with respect to 
an orthonormal frame on S2. In computations, it is often more convenient to replace h
by its positively 1-homogeneous extension to R3 \ {0}, which is given by,

ϕ (x) := ‖x‖h
(

x

‖x‖

)
,

for x ∈ R3 \ {0}, where ‖.‖ is the Euclidean norm on R3. A straightforward computation 
gives:

(i) xh is the restriction of the gradient of ϕ to the unit sphere S2;
(ii) For all u ∈ S2, the tangent map Tuxh identifies with the symmetric endomorphism 

associated with the Hessian of ϕ at u.

In order to bring out our geometrical interpretation of the co-evolute H∂h, we now 
give another expression for xlh . For all u ∈ S2, we have

xlh (u) := lh (u) + δ (∂h) (u)uL = (∇h (u) , h (u)) + Δh (u)
2 (u,−1)

=
(
∇h (u) + Δh (u)

2 u, h (u) − Δh (u)
2

)
=

(
xh (u) −R(1,h) (u)u,R(1,h) (u)

)
=

(
ch (u) , R(1,h) (u)

)
,
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where ch (u) is the midpoint of the focal segment (which connects the two centers of 
principal curvatures of Hh at xh (u)) and, R(1,h) := h − Δh

2 = 1
2 (R1 + R2) is the mean 

radius of curvature of Hh (for the interpretation of R(1,h) as a mixed curvature function 
see e.g. [9]). Therefore, for all u ∈ S2, xlh (u) can be interpreted geometrically as the 
(possibly reduced to a point) middle sphere of Hh at xh (u) that is cooriented by the 
vector u, which is normal to it, by identifying L4 to the so-called Laguerre space, say Σ, 
of cooriented spheres and (non-cooriented) point spheres of R3 via the bijection

L4 → Σ
(a, r) �→ S (a; r) ,

where S (a; r) denotes the sphere of radius |r| centered at a that is cooriented by its out-
ward (resp. inward) pointing normal if r > 0 (resp. r < 0) holds, and the (non-cooriented) 
point sphere {a} if r = 0 holds. Thus:

Proposition 1. The co-evolute H∂h of Hh can be regarded as the locus of all the (possibly 
reduced to a point) cooriented middle spheres of Hh ⊂ R3 in L4 ∼= Σ.

1.1.3. Relationship with Laguerre geometry
Laguerre geometry in R3 is based on oriented planes, cycles (i.e., oriented spheres 

and points regarded as unoriented spheres of radius zero) and oriented contact between 
them. The orientation is determined by a unit normal vector field or, equivalently, by 
a signed radius in the case of a sphere. An oriented sphere or an oriented hyperplane 
of R3 is said to be in oriented contact with another oriented sphere or hyperplane if 
they are tangent and moreover if their unit normals coincide at the point of tangency. 
An unoriented point sphere is said to be in oriented contact with an oriented sphere or 
hyperplane if it is contained in it. An affine Laguerre transformation of L4 ∼= Σ is an 
affine transformation A (x) := L(x) + C of L4, where L is a linear transformation that 
preserves the pseudo-scalar product 〈., .〉L (i.e., L ∈ O (3, 1)), and thus the tangential 
distance between spheres, and C is a vector of L4.

Classical references on sphere geometries of Laguerre and Lie are Blaschke’s book 
[1] and, for a modern account, T. Cecil’s book [2]. In these two references, it is shown 
that Laguerre geometry in R3 can be built as a subgeometry of Lie sphere geometry. The 
subgroup of ‘Laguerre transformations’ then consists of those Lie sphere transformations 
that map planes to planes. Each of these Laguerre transformations corresponds to an 
affine Laguerre transformation of L4 (as we have defined them above).

Laguerre geometry of surfaces studies properties and invariants of surfaces of R3 under 
the Laguerre transformation group. It has been extensively developed by Blaschke and 
its school [1]. Let us consider the case of hedgehogs of R3. Let Ω be an open domain 
of S2 such that xh : Ω → R3 is an umbilic-free (piece of) hedgehog Hh with support 
function h ∈ C∞ (Ω;R). The geometric invariants of the (co)hedgehog H∂h

∼= xlh (Ω)
of L4 are exactly the Laguerre invariants of the original hedgehog Hh. The conformal 
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immersion xlh : Ω → L4, which we consider as a natural parametrization x∂h : Ω → L4

of the co-evolute H∂h of Hh, assigns to each u ∈ Ω the point of L4 corresponding to the 
oriented middle sphere or unoriented middle point S

(
ch (u) ;R(1,h) (u)

)
∈ L4 ∼= Σ that 

is in oriented contact with the oriented support plane of Hh at xh (u). It will be called 
the Laguerre Gauss map of xh : Ω → R3.

Note that the set of marginally trapped hedgehogs H∂h
∼= xlh

(
S2) of L4, identified 

with their support differentials ∂h := dh/
√

2, constitute a real linear space, say ∂H. The 
surface area of marginally trapped hedgehogs of L4 defines a particularly interesting 
Laguerre invariant functional on ∂H, the so-called Laguerre functional:

L: ∂H → R

∂h �→ L (∂h) := 1
4

∫
S2

(R1 −R2)2 dσ =
∫
S2

(
R2

(1,h) −Rh

)
dσ,

where σ is the spherical Lebesgue measure on S2, R(1,h) the mean radius of curvature, 
and Rh the curvature function of Hh. For any h ∈ C∞ (Ω;R), L (∂h) will be called the 
Laguerre area of Hh and will sometimes be denoted by L (xh).

The surface area element of H∂h can be interpreted in R3 by considering the mean 
surface of Hh, say Mh, which we define as the (possibly singular and self-intersecting) 
surface that is parametrized by ch : S2 → R3, u �→ ch (u). Indeed, if we denote by dμh (u)
the corresponding surface area element of this mean surface Mh, then it is pure routine 
to check that:(

R2
(1,h) −Rh

)
(u) dσ (u) can be regarded as the orthogonal projection of dμh (u)

into the plane that is parallel to the support plane Ph (u) of Hh and passes through
ch (u) ∈ Mh.

The following theorem is a first step towards a ‘Brunn–Minkowski theory’ for 
marginally trapped hedgehogs, which will be the topic of our next subsection.

Theorem 2. The map 
√
L : ∂H → R+, ∂h �−→

√
L (∂h) is a norm associated with the 

scalar product

L: (∂H)2 �→ R,

(∂f, ∂g) �−→ L (∂f, ∂g) :=
∫
S2

(
R(1,f)R(1,g) −R(f,g)

)
dσ,

where R(.,.) denotes the mixed curvature function of hedgehogs (see e.g. [9] for a detailed 
definition and fundamental properties of R(.,.)).

In particular, for all (∂f, ∂g) ∈ (∂H)2, we have√
L (∂f + ∂g) ≤

√
L (∂f) +

√
L (∂g),

and
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L (∂f, ∂g)2 ≤ L (∂f) L (∂g) ,

with equalities if, and only if, H∂f and H∂g are homothetic (here,“homothetic” means 
that there exists (λ, μ) ∈ R2 − {(0, 0)} such that λ∂f + μ∂g = 0).

The scalar product L (∂f, ∂g) will of course be called the mixed Laguerre area of H∂f

and H∂g, and will sometimes be denoted by L (xf , xg).
We will return to the Laguerre geometry of hedgehogs in the framework of contact 

geometry.

1.2. Relationship with the Brunn–Minkowski theory

Classical hedgehog theory is an extension of the Brunn–Minkowski theory. The rela-
tionship between hedgehogs and marginally trapped surfaces is thus very promising in 
terms of new geometric inequalities. We already mentioned two fundamental geomet-
ric inequalities for marginally trapped hedgehogs in our Theorem 2. Here, it is worth 
pointing out how important geometric inequalities are in gravitation since they pro-
vide information on the relationship between physically relevant magnitudes in a robust 
way. We will see that marginally trapped hedgehogs arise naturally in a 3-dimensional 
equivalent of a classical geometric inequality for hedgehogs of the Euclidean plane.

Classical isoperimetric inequalities involving evolutes for hedgehog curves are involv-
ing (co)evolutes for hedgehog surfaces

In [8] the author already introduced H∂h as a hedgehog with support differential 
∂h := dh/

√
2 but without precisely grasping the essence of the co-contact structure. Let 

us recall how marginally trapped hedgehogs appeared in order to play the role of evolutes 
in a natural 3-dimensional equivalent of a known upper bound of the isoperimetric deficit 
of plane hedgehog curves in terms of signed area of their evolute.

H. Geppert was the first to introduce hedgehogs in R2 and R3 (under the German 
names stützbare Bereiche and stützbare Flächen) in 1937 [5] in an attempt to extend 
parts of the Brunn–Minkowski theory. Many classical inequalities for convex curves find 
their counterparts for hedgehogs. Of course, adaptations are necessary. In particular, 
lengths and areas have to be replaced by algebraic versions. For instance, Theorem 3
below extends the isoperimetric inequality L2 − 4πA ≥ 0, which holds for any planar 
convex body K with perimeter L, and area A, to any hedgehog Hh of the Euclidean 
plane R2, and gives an upper bound of the isoperimetric deficit in terms of signed area 
of the evolute.

Theorem 3 ([7, Prop. 6, upper bound of the isoperimetric deficit in terms of signed area of 
the evolute]). For any h ∈ C4 (S1;R

)
, let Hh be the hedgehog of R2 with support function 

h (i.e. the envelope of the family of cooriented lines with equation 〈x, u(θ)〉 = h (θ), where 
u (θ) = (cos θ, sin θ)). We have:
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0 ≤ l(h)2 − 4πa(h) ≤ −4πa (∂h) = −4πa
(
h, ∂2h

)
, (I)

where l (h) is the length of Hh, a (h) its area, ∂h (θ) := h′ (θ − π
2
)

the support function 
of its evolute H∂h, ∂2h := −h′′ the one of its second evolute H∂2h, and a 

(
h, ∂2h

)
the 

mixed area of Hh and H∂2h. In each inequality of (I), the equality holds if and only if 
Hh is a circle or a point.

The isoperimetric inequality L2 − 4πA ≥ 0 admits the following 3-dimensional equiv-
alent. Given a convex body K in the Euclidean 3-space R3, with surface area S and 
integral of the mean curvature M , the first Minkowski inequality for mixed volumes 
ensures that

M2 − 4πS ≥ 0,

where equality holds if and only if K is a ball (see e.g. [13]). In [8] the author proved the 
following 3-dimensional equivalent of Theorem 3:

Theorem 4 ([8, Theorem 1, upper bound of the ‘deficit’ M2 − 4πS in terms of signed 
area of the co-evolute surface]). For any h ∈ C4 (S2;R

)
, let Hh denote the hedgehog of 

R3 with support function h, (i.e. the envelope of the family of cooriented planes with 
equation 〈x, u〉 = h (u) in R3). We have:

0 ≤ m(h)2 − 4πs(h) ≤ −4πs (∂h) = −4πs
(
h, ∂2h

)
, (II)

where m (h) is the integral of the mean curvature of Hh, s(h) its signed surface area, 
s(∂h) the signed surface area of H∂h, and s 

(
h, ∂2h

)
the mixed surface area of Hh and 

of its mean evolute H∂2h. In each inequality of (II), the equality holds if and only if Hh

is a sphere or a point.

Here, the signed surface area s(∂h) is the opposite of the Laguerre area L (∂h), which 
we have introduced in the previous subsection. In other words, s (∂h) = −L (∂h). Besides, √

2 ∂ stands for the Hodge–Dirac operator D = d + δ on S2, where d is the exterior 
differentiation and δ = − ∗d∗ the codifferential, so that ∂h = dh/

√
2 and ∂2h = 1

2δ (dh) =
1
2Δh(u). Recall that the mean evolute of Hh is the envelope of the family of planes parallel 
to the support planes to Hh and passing through the midpoints of the focal segments 
(which connect the two centers of principal curvature of Hh in R3). Now in the planar 
case, ∂ can be interpreted as the Hodge–Dirac operator D = d + δ on S1. Indeed, dhθ =
h′ (θ) dθ can be interpreted as the support function ∂h (θ) of the evolute H∂h in the sense 
that H∂h is the envelope of the family of cooriented lines with equation 〈x, u′ (θ)〉 = h′ (θ), 
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and D2h = −h′′. Thus, in this equivalence between these two isometric inequalities (for 
hedgehog curves and surfaces), we have the following correspondences:

Hedgehog curve Hh in R2

↓ ∂

Evolute curve H∂h in R2

↓ ∂

Second evolute curve H∂2h in R2

Hedgehog surface Hh in R3

↓ ∂

Co-evolute surface of Hh in L4

(Marginally trapped hedgehog H∂h)

↓ ∂

Mean evolute surface H∂2h in R3

where 
√
n∂ denote the Hodge–Dirac operator D = d + δ on Sn, with respectively n = 1

and 2 for curves and surfaces.

Remark in the 3-dimensional case. For any h ∈ C4(S2;R
)
, we have the following com-

mutative diagram:

Transition to (cooriented)
middle spheres-points of Hh

H∂h ⊂ L4 ∼= Σ

Transition to the envelope in R3 of
(P (u))u∈S2 , where P (u) is the plane
through the center of the sphere x∂h (u)

that is cooriented by u,
(
u ∈ S2)

↗ ↘
Hh ⊂ R3 −→ H∂2h ⊂ R3

Transition to
the mean evolute

Passage over into the spacetime and reincarnation in RRR3. The marginally trapped hedge-
hog H∂h can be thought as the ‘Hodge–Dirac evolute’ of Hh. This evolute therefore lives 
in L4 (and not in R3) whereas the mean evolute of Hh (which can be thought as the 
‘second Hodge–Dirac evolute’ H∂2h of Hh, or equivalently, as the ‘first Hodge–Dirac evo-
lute’ of H∂h) does live in R3. For any h ∈ C∞(

S2;R
)
, we can thus consider the sequence 

(H∂nh)n∈N
of ‘hedgehogs’, which is such that:

(i) for any even n = 2k, (k ∈ N∗), H∂2kh is the (ordinary) hedgehog of R3 that is the 
mean evolute of H∂2(k−1)h ⊂ R3;

(ii) for any odd n = 2k + 1, (k ∈ N), H∂2k+1h is the (marginally trapped) hedgehog of 
L4 that is the co-evolute of H∂2kh ⊂ R3.



330 Y. Martinez-Maure / Advances in Applied Mathematics 101 (2018) 320–353
The support vector field of H∂h. For any h ∈ C4 (S2;R
)
, let 

−→
∂h denote the vector field 

that corresponds to the 1-form ∂h := dh/
√

2 by the canonical musical duality:

∀−→X ∈ TS2, (∂h)
(−→
X
)

= g
(−→
∂h,X

)
=

−→
∂h.

−→
X ,

where g :
(−→
X,

−→
Y
)
�→ g

(−→
X,

−→
Y
)

= −→
X.

−→
Y denotes the standard metric on S2.

Similarity of formulas for hedgehogs and (co)hedgehogs

Theorem 5. For any h ∈ C4 (S2;R
)
, the signed surface area s(∂h) of H∂h can be ex-

pressed in the following forms:

s(∂h) =
∫
S2

((−→
∂h

)2
−
(
∂2h

)2)
dσ =

∫
S2

−→
∂h.

−−−−→
∂R(1,h)dσ,

where σ is the spherical Lebesgue measure on S2, ∂2h the support function of the mean 
evolute of Hh, and R(1,h) the mean radius of curvature of Hh.

It is worth noting the similarity with the known formulas for the signed surface area 
of a hedgehog Hh of R3:

s (h) =
∫
S2

(
h2 −

(−→
∂h

)2
)
dσ =

∫
S2
h.R(1,h)dσ,

where h ∈ C2 (S2;R
)
.

Let us recall the proof of these two last inequalities. From the definition

s (h) =
∫
S2
Rhdσ,

we obtain s (h) =
∫
S2 h.R(1,h)dσ by the symmetry of the mixed volume (see e.g. [7]), and 

then s (h) =
∫
S2

(
h2 −

(−→
∂h

)2
)
dσ by integrating by parts.

In the same vein as Theorem 5, we can notice that the signed surface area of the mean 
evolute H∂2h of Hh is given by:

s
(
∂2h

)
=

∫
S2

((
∂2h

)2 −−−−−−→
∂
(
∂2h

)2) dσ =
∫
S2

(
∂2h

)
.∂2R(1,h)dσ.

From the above formulas, we deduce that the mixed surface area of two hedgehogs 
Hf and Hg of R3 is given by:

s (f, g) =
∫ (

fg −−→
∂f.

−→
∂g

)
dσ =

∫
f.R(1,g)dσ =

∫
g.R(1,f)dσ.
S2 S2 S2
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Now, the integration by parts formula can be written as∫
S2

−→
∂f.

−→
∂gdσ =

∫
S2
f.∂2gdσ

for all (f, g) ∈ C4 (S1;R
)2. Therefore

∫
S2

−→
∂f.

−−−−→
∂R(1,g)dσ =

∫
S2
f.∂2R(1,g)dσ =

∫
S2
f.R(1,∂2g)dσ = s

(
f, ∂2g

)
,

and so, by the symmetry of the mixed surface area of hedgehogs,∫
S2

−→
∂f.

−−−−→
∂R(1,g)dσ = s

(
∂2g, f

)
=

∫
S2
∂2g.R(1,f)dσ,

and again by the integration by parts formula∫
S2

−→
∂f.

−−−−→
∂R(1,g)dσ =

∫
S2

−→
∂g.

−−−−→
∂R(1,f)dσ.

Thus, we have deduced the following corollary to Theorem 5.

Corollary 1. For any (f, g) ∈ C4 (S2;R
)2, let s(∂f, ∂g) denote the mixed surface area 

of H∂f and H∂g, that is s(∂f, ∂g) := −L (∂f, ∂g). This mixed area s(∂f, ∂g) can be 
expressed in the following forms:

s(∂f, ∂g) =
∫
S2

−→
∂f.

−−−−→
∂R(1,g)dσ =

∫
S2

−→
∂g.

−−−−→
∂R(1,f)dσ = s

(
f, ∂2g

)
= s

(
∂2f, g

)
,

where σ is the spherical Lebesgue measure on S2.
In particular, the mixed surface area of the marginally trapped hedgehogs H∂f and 

H∂g is equal to the mixed surface area of the (ordinary) hedgehogs Hf and H∂2g, which 
is the mean evolute of Hg.

Hedgehog theory is not restricted to Euclidean spaces

Of course, the classical hedgehog theory is not restricted to Euclidean spaces. In [4], 
F. Fillastre introduced and studied ‘Fuchsian convex bodies’, which are the closed convex 
sets of the Lorentz–Minkowski space Ln+1 that are globally invariant under the action of 
some Fuchsian group. In particular, he gave a ‘reversed Alexandrov–Fenchel inequality’ 
and thus a ‘reversed Brunn–Minkowski inequality’. In [11], the author gave a detailed 
study of plane Lorentzian and Fuchsian hedgehogs and also proved a series of Fuchsian 
analogues of classical geometrical inequalities (which are also reversed as compared to 
classical ones).



332 Y. Martinez-Maure / Advances in Applied Mathematics 101 (2018) 320–353
1.3. Synthetic and comparative co-presentation of hedgehogs and (co)hedgehogs

In this section, we will now compare carefully the definitions of hedgehogs in R3 and of 
(co)hedgehogs (i.e., marginally trapped hedgehogs) in L4, and then for the convenience 
of the reader, we will summarize schematically our comparison in tables.

As recalled in Subsection 1.1, the datum of any h ∈ C∞(
S2;R

)
determines the hedge-

hog Hh in R3 as the envelope of the family (Ph (u))u∈S2 of cooriented planes with equation 
〈x, u〉 = h (u), 

(
u ∈ S2). Analytically, taking the envelope of P amounts to solving the 

following system of equations

{
〈x, u〉 = h (u)
〈x, du〉 = dhu,

for all u ∈ S2, where the second equation is deduced from the first via the contact 
condition 〈dx, u〉 = 0 (and thus by performing a partial differentiation with respect 
to u).

Now, as we saw in Subsection 1.1, the datum of ∂h := dh/
√

2 determines the 
(co)hedgehog (i.e., marginally trapped hedgehog) H∂h in L4 as the co-envelope 
of the family (Lh+t (u))(u,t)∈S2×R

of oriented null lines defined by Lh+t (u) :=
{(∇h (u) , h (u) + t)}+RuL. Analytically, taking the co-envelope of L amounts to solving 
the following system of equations

(S)

⎧⎪⎪⎨⎪⎪⎩
{

〈x, uL〉L = (h (u) + t) /
√

2
〈x, duL〉L = ∂h (u)

〈x,ΔuL〉L = δ (dh) (u) ,

for all (u, t) ∈ S2 × R, where the third equation is deduced from the two first ones 
via the co-contact condition 〈Δx, uL〉L = 0 (or, equivalently, by performing a partial 
codifferentiation with respect to u in the second equation). Here, the Hodge–Laplace 
operator of a vector function X : S2 → L4, u �→ (Xi (u))4i=1 is of course understood to 
be the vector function ΔX : S2 → L4, u �→ (ΔXi (u))4i=1, where ΔXi is the Hodge–
Laplace operator of the coordinate function Xi in the intrinsic metric on S2, (1 ≤ i ≤ 4). 
Note that the system formed by the two first equations of (S) simply traduces the fact 
that x ∈ Lh+t (u). The second equation can be deduced from the first by using the 
condition 〈dx, uL〉L = 0 (and thus by performing a partial differentiation with respect 
to u).

For any h ∈ C∞(
S2;R

)
, we therefore have the following comparison table between 

both definitions:
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The hedgehog Hh can be defined
in R3 as the envelope of the family
(Ph (u))u∈S2 of cooriented planes
with equation 〈x, u〉 = h (u) .

(1) 〈x, u〉 = h (u)

⇓

[ via the contact condition

(d) 〈dx, u〉 = 0

or a partial differentiation
with respect to u]

(2) 〈x, du〉 = dhu

For every u ∈ S2, the system{
(1) 〈x, u〉 = h (u)
(2) 〈x, du〉 = dhu,

implies x = h (u)u + ∇h (u)

In the absence of singularities,

xh : S2 → Hh, u �→ h(u)u + ∇h(u)

can be interpreted as the inverse
of the Gauss map of Hh.

The (co)hedgehog H∂h can be defined
in L4 as the co-envelope of the family
(Lh+t (u))(u,t)∈S2×R

of oriented null lines
defined by :
Lh+t (u) := {(∇h (u) , h (u) + t)} + RuL.

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1.a) 〈x, uL〉L = (h (u) + t) /
√

2

⇓ (via 〈dx, uL〉L = 0 or a partial
differentiation with respect to u)

(1.b) 〈x, duL〉L = ∂h (u)

⇓
(via the co-contact condition

(δ) 〈δ (dx) , uL〉L = 0,
or a codifferentiation with respect to u)

(2) 〈x,ΔuL〉 = δ (dh) (u)

For every (u, t) ∈ S2 × R, the system{
(1) = (1.a) and (1.b) : x ∈ Lh+t (u)
(2) 〈x,ΔuL〉 = δ (dh) (u) ,

implies x = (∇h(u) , h(u) + t) + δ(∂h)(u)uL

In the absence of umbilical points,

x∂h : Ω → H∂h, u �→ lh (u) + δ(∂h)(u)uL

can be interpreted as the Laguerre Gauss
map of xh : Ω → R3.

The cooriented support plane Ph (u) is determined by h (u)u and thus by the value 
of the support function h at u, and xh (u) is then determined on Ph (u) by the contact 
condition which imposes xh (u) − h (u)u = ∇h (u). Analogously, the oriented support 
null line Lh (u) is determined by lh (u) and thus by the value of the support differential 
∂h at u, and x∂h (u) is then determined on Lh (u) by the co-contact condition which 
imposes x∂h (u) − lh (u) = δ (∂h) (u)uL:
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The role of (d) and (δ) in the determination of Hh and H∂h

The contact condition (d) allows us
to write

〈x, du〉 = d (〈x, u〉) .

The co-contact condition (δ) allows us
to write 〈x,ΔuL〉L = Δ (〈x, uL〉L)

provided that 〈dx, uL〉 = 0.

What is meant by the contact and co-contact conditions (d) and (δ)

Recall first that, for every C2-map x : S2 → L4 and every u ∈ S2, Δx (u) = δ (dx) (u)
can be interpreted as a second order derivative that measures, both in direction and 
magnitude, how x (u) deviates from the average of x over an infinitesimal sphere centered 
at u in S2.

Condition (d)
〈dx, u〉 = 0 on x : S2 → R3

For all u ∈ S2, u is orthogonal to the
tangent space
Tx(u)x

(
S2) = (Tux)

(
TuS

2)
in the Euclidean space

(
R3, 〈., .〉

)
.

Condition (δ)
〈δ (dx) , uL〉L = 0 on x : S2 → L4

For all u ∈ S2, uL is orthogonal in(
L4, 〈., .〉L

)
to the above mentioned

measure of deviation (in direction
and magnitude)Δx(u)= δ(dx)(u).

2. Marginally trapped hedgehogs in other spaces and generalizations

2.1. Marginally trapped hedgehogs or co-hedgehogs in M4

2.1.1. Characterization and definitions in M4

As already mentioned, the hedgehog theory is not restricted to Euclidean spaces. For 
instance, in our preliminary study of Subsection 1.1, we can replace 

(
R3, 〈., .〉

)
by the 

Lorentzian–Minkowski 3-space L3 =
(
R3, 〈., .〉L

)
,where
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〈x, x′〉L = x1x
′
1 + x2x

′
2 − x3x

′
3,

for all x := (x1,x2, x3) and x′ :=
(
x′

1,x
′
2, x

′
3
)

in R3, and the unit sphere S2 of R3 by the 
‘unit sphere’

H2 :=
{
x = (x1, x2, x3) ∈ L3 |〈x, x〉L = −1

}
,

which is a two-sheeted hyperboloid with constant Gaussian curvature −1 with respect to 
the induced metric. To any h ∈ C∞ (

H2;R
)

corresponds the envelope Hh of the family 
(Ph (v))v∈S2 of cooriented spacelike planes of L3 with equation (E) 〈x, v〉L = h (v). We 
say that Hh is the hedgehog of L3 with support function h. From (E) and the contact 
condition 〈dx, v〉L = 0, we deduce {

〈x, v〉L = h (v)
〈x, dv〉L = dhv,

for all v ∈ H2. Thus, it appears that Hh can be parametrized by xh : H2 → L3, v �→
(∇h) (v) − h(v)v, where (∇h) (v) stands for the gradient of h at v. The parametrization 
xh can be interpreted as the inverse of its Gauss map (if v is a regular point of xh, then v
is normal to Hh at xh (v)). Note that (Hh+t)t∈R

is a family of parallel hedgehogs in R3: 
for all (v, t) ∈ H2 × R, xh+t (v) = xh (v) − tv.

Now, we claim that:

To the differential dh of h corresponds naturally a ‘marginally trapped hedgehog’ of the 
Lorentz Minkowski 4-space M4 =

(
R4, 〈., .〉M

)
via a ‘lightlike co-contact condition’.

Here, the pseudo-scalar product 〈., .〉M is defined by

〈(x, t) , (x′, t′)〉M := x1x
′
1 + x2x

′
2 − x3x

′
3 + tt′,

for all (x, t) := ((x1,x2, x3), t) and (x′, t′) :=
((
x′

1,x
′
2, x

′
3
)
, t′

)
in R4 = R3 × R. Indeed, dh

determines the family (Lh+t (v))(v,t)∈H2×R
of oriented null lines of M4 defined by:

∀ (v, t) ∈ H2 × R, Lh+t (v) = lh+t (v) + R (v,−1) ,

where lh+t (v) := (∇h (v) ,−h (v) − t); and this family of null lines determines a 
‘marginally trapped hedgehog’, which is unique up to translations parallel to the time 
axis, via a ‘lightlike co-contact condition’:

Theorem 6 (Determination of marginally trapped hedgehogs of M4 by 1-jet and co-contact 
condition). For all t ∈ R, (i) there is a unique map x : H2 → M4 of class C∞ satisfying 
x (v) ∈ Lh+t (v) for all v ∈ H2 together with the ‘lightlike co-contact condition’
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〈δ (dx) , vM 〉M = 0,

where δ is the Hodge codifferential on H2 (i.e. the formal adjoint to the exterior differ-
entiation d) and vM := 1√

2 (v,−1), namely

x = xlh+t
: H2 → M4, v �→ lh+t (v) + δ (∂h) (v) vM ,

where ∂h (v) := dh/
√

2;

(ii) this map x : H2 → M4 is such that x∗g = 1
4 (R1 −R2)2 gH , where gH is the 

standard metric on H2, g the first fundamental form on x 
(
H2), x∗g the pullback 

of g along x and R1 (v) , R2 (v) the principal radii of curvature of Hh at xh (v);
(iii) for all v ∈ H2, Δx (v) ∈ RvM , where Δ is the Hodge Laplacian on H2, so that 

the mean curvature vector of x 
(
H2) at x (v), say 

−→
Hx (v), is parallel to the lightlike 

vector −→vM whenever xh (v) is not an umbilical point of Hh, that is:

∀v ∈ H2�
{
v ∈ H2 |R1 (v) = R2 (v)

}
, −→

Hx (v) ∈ R−−→vM .

Here, the principal radii of curvature of Hh at xh (v), R1 (v) and R2 (v), are defined 
as the eigenvalues of xh : TvH2 → Txh(v)Hh ⊂ TvH2.

Definition 3. For all t ∈ R, we call Hlh+t
:= xlh+t

(
H2) the (marginally trapped) hedge-

hog with support 1-jet j1
h+t : H2 → J1 (H2), v �→ (∇h (v) , h (v) + t).

Note that 
√

2 ∂ stands for the Hodge–Dirac operator D = d + δ on H2 and the 
datum of ∂h := dh/

√
2 is equivalent to the one of the family of 1-jets 

(
j1
h+t

)
t∈R

, where 
j1
h+t := (∇h, h + t). All the marginally trapped hedgehogs of the family 

(
Hlh+t

)
t∈R

are 

equal up to translations parallel to the time axis R
−→
∂t in M4, where 

−→
∂t :=

(−→0L3 , 1
)
, since: 

for all (v, t) ∈ H2 × R, xlh+t
(v) = xlh (v) − t

−→
∂t . Therefore, this family can be regarded 

as one and only one marginally trapped hedgehog defined up to a translation parallel to 
the time axis R

−→
∂t in M4. This hedgehog will be denoted by H∂h, where ∂h := dh/

√
2

(the factor 1/
√

2 is chosen for the same reasons as in the case of marginally trapped 
hedgehogs of L4).

These remarks make natural the following definition:

Definition 4. We call H∂h the marginally trapped hedgehog (or, co-hedgehog) of M4 with 
support differential ∂h := dh/

√
2. Anyone of the marginally trapped hedgehogs Hlh+t

, 
(t ∈ R), will be regarded as a representative of H∂h in M4. We will say that H∂h is the 
co-evolute of Hh in M4.

Thus, once the lightlike ‘co-contact condition’ 〈δ (dx) , vM 〉M = 0 is fixed, the hedge-
hog H∂h is defined in M4 as the ‘co-envelope’ of the family of oriented null lines 
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determined by its support differential ∂h in the same way as, once the contact con-
dition 〈dx, v〉L = 0 is fixed, the hedgehog Hh is defined in L3 as the envelope of the 
family of cooriented spacelike planes determined by its support function h. Of course, 
it is important to note that Hh and H∂h are not assumed to be embedded surfaces of 
respectively L3 and M4: Hh and H∂h may possibly be singular and self-intersecting.

2.1.2. Geometrical interpretation of co-hedgehogs of M4

First, let us remind some basic facts about the curvature of hedgehogs of L3. Since the 
parametrization xh : H2 → Hh ⊂ L3 can be regarded as the inverse of the Gauss map, 
the Gauss curvature Kh of Hh at xh (v) is given by Kh(v) = 1/ det [Tvxh], where Tvxh

is the tangent map of xh at v. Therefore, singularities of Hh are the points at which its 
Gauss curvature becomes infinite. For all v ∈ H2, the tangent map of xh at the point u
is Tuxh = Hh(v)−h (v) IdTvH2 , where Hh(v) is the symmetric endomorphism associated 
with the Hessian of h at v. Consequently, if λ1 (v) and λ2 (v) are the eigenvalues of the 
Hessian of h at v then R1 (v) := (λ1 − h) (u) and R2 (v) := (λ2 − h) (v) can be interpreted 
as the principal radii of curvature of Hh at xh (v), and the so-called curvature function
Rh := 1/Kh is given by

Rh (v) = det [Hij (u) − h (u) δij ] = (R1R2) (v) ,

where δij are the Kronecker symbols and (Hij (v)) the Hessian of h at v with respect 
to an orthonormal frame on H2. In computations, it is often more convenient to re-
place h by its positively 1−homogeneous extension to the interior of the light cone 
U =

{
x ∈ L3 |〈x, x〉L < 0

}
, that is, by

ϕ (x) := ‖x‖L h

(
x

‖x‖L

)
,

for x ∈ U , where ‖x‖L =
√

−〈x, x〉L. A straightforward computation gives:

(i) xh is the restriction of the Lorentzian gradient ∇Lϕ :=
(

∂ϕ
∂x1

, ∂ϕ
∂x2 ,−

∂ϕ
∂x3

)
of ϕ to 

the unit sphere H2;
(ii) For all v ∈ H2, the tangent map Tvxh identifies with the symmetric endomorphism 

associated with the Hessian of ϕ at v.
In order to bring out our geometrical interpretation of the co-evolute H∂h, we now 

give another expression for xlh . For all v ∈ H2, we have

xlh (v) := lh (v) + δ (∂h) (v) vM = (∇h (v) ,−h (v)) + Δh (v)
2 (v,−1)

=
(
∇h (v) + Δh (v)

2 v,−h (v) − Δh (v)
2

)
=

(
xh (v) −R(−1,h) (v) v,R(−1,h) (v)

)
=

(
ch (v) , R(−1,h) (v)

)
,
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where Δ is the Hodge Laplacian on H2, ch (v) is the midpoint of the segment connecting 
the two centers of principal curvatures of Hh at xh (v) and, R(−1,h) := − 

(
h + Δh

2
)

=
1
2 (R1 + R2) is the mean radius of principal curvature of Hh. Thus, for all v ∈ H2, xlh (v)
can be interpreted geometrically as the middle pseudosphere (or possibly non-cooriented 
light cone) of Hh at xh (v) that is cooriented by the vector v, which is normal to it, by 
identifying M4 to the space Π of cooriented pseudospheres and (non-cooriented) light 
cones of L3 via the bijection

M4 = L3 × R → Π
(a, r) = ((a1, a2, a3) , r) �→ H2 (a; r) ,

where H2 (a; r) is the two-sheeted hyperboloid (pseudosphere) with equation 〈x − a,

x −a〉L = −r2 that is cooriented so that its upper sheet H2
+ (a; r) := H2 (a; r)∩{x3 > a3}

is cooriented by its future (resp. pass) pointing normal if r > 0 (resp. r < 0) holds, and 
the (non-cooriented) light cone with apex at a if r = 0 holds. Thus:

Proposition 2. The co-evolute H∂h of Hh can be regarded as the locus of all the middle 
cooriented pseudospheres (or non-cooriented light cones) of Hh ⊂ L3 in M4 ∼= Π.

2.2. Towards other spaces and generalizations

As already mentioned, most of our results extend, without much change, to higher 
dimensions. Furthermore, the hedgehog theory is of course not restricted to the only 
two examples we have considered above. For instance, we could have adapted our pre-
sentation to Fuchsian hedgehogs, which were introduced by François Fillastre [4]. We 
could also have considered ‘multihedgehogs’ or ‘N -hedgehogs’ as they were introduced 
by Langevin, Levitt and Rosenberg [6], provided of course that we pay proper attention 
to the fact that an N -hedgehog may have parabolic points (i.e., points where their Gauss 
curvature vanishes, and thus, points at which their curvature function is not defined) 
for N ≥ 2. Recall that an N -hedgehog of R3 is any envelope of a family of cooriented 
planes of R3 such that the number of cooriented support planes with a given coorient-
ing unit normal vector is finite and constant equal to N (at least for an open dense 
set of directions). Thus 1-hedgehogs of R3 are simply hedgehogs. But in fact, all these 
geometrical objects of different spaces can be regarded as wavefronts of a special class 
of Legendrian submanifolds (i.e. images of Legendrian maps) of a given metric contact 
manifold. Before going on, we first recall some basic definitions and facts on contact, 
symplectic and almost-hermitian structures, and next present and study hedgehogs and 
marginally trapped hedgehogs in this setting.

2.2.1. Basic definitions and facts

Contact manifolds and metric contact manifolds

A contact structure on an oriented (2n + 1)-dimensional C∞-manifold M is the datum 
of a smooth field V of tangent hyperplanes on M , called contact hyperplanes, satisfying 
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the following condition of maximal non-integrability: any (and hence every) 1-form α
defining V (i.e. such that V = Ker (α)) satisfies α ∧ (dα)n �= 0 everywhere on M . Any 
1-form α defining such a maximally non-integrable hyperplane field V on M is called a 
contact form on M . Given such a contact structure (or a contact form α defining it), the 
pair (M,V ) (or the pair (M,α) if we want to fix the contact form defining V ) is then 
called a contact manifold. On (M,α), the Reeb vector field ξα associated to the contact 
form α is defined to be the unique smooth vector field satisfying

α (ξα) = 1 and ξα ∈ Ker (dα) .

A submanifold L of a contact manifold (M,V ) is said to be integral if TmL ⊂ Vm for all 
m ∈ L. A Legendrian submanifold of (M,V ) is an integral submanifold of (M,V ) with 
maximal dimension n = (dimM − 1) /2. A fibration of a contact manifold is said to be 
Legendrian if all its fibers are Legendrian submanifolds.

Let i : L → E be an immersed Legendrian submanifold L in the total space of a 
Legendrian fibration π : E → B. The restriction of π to L, that is x = π ◦ i : L → B

is called a Legendrian map and its image x (L) in B is called its Legendrian front or 
wavefront.

Example. Unit tangent bundles of Riemannian manifolds are among the most classical 
examples of contact manifolds. Let us recall briefly how this is done. Let (M, g) be a 
Riemannian manifold and let

UTM = {u ∈ TM |g (u, u) = 1}

be its unit tangent bundle with canonical projection π : UTM → M ; the metric g
induces a contact form α (and thus a contact structure V ) on UTM as follows: for any 
u ∈ UTM and v ∈ Tu (UTM), we let

αu (v) = g (u, Tuπ (v)) ,

where Tuπ (v) = π∗ (v) is the pushforward along π of the vector v. Moreover, π : UTM →
M is an example of a Legendrian fibration.

In particular, if we let

α(x,u) := 〈u, dx〉 =
n+1∑
i=0

uidxi

for all (x, u) ∈ URn+1 = Rn+1×Sn, where (x1, · · · , xn+1; u1, · · · , un+1) are the canonical 
coordinate functions on URn+1 = Rn+1 × Sn ⊂ R2n+2, we obtain a contact manifold (
URn+1;α

)
.

A contactomorphism from a contact manifold (M1, V1) to a contact manifold (M2, V2)
is a diffeomorphism f : M1 → M2 that preserves the contact structure, i.e. such that 
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Tf (V1) = V2, where Tf : TM1 → TM2 denotes the tangent map of f . If Vi = Ker (α1), 
(i = 1, 2), this is equivalent to the existence of a nowhere zero function λ : M1 → M2

such that f∗α2 = λα1.

Example. Another example of a contact manifold is defined as follows: on the manifold 
TSn × R, where the tangent bundle TSn is identified with{

(u, p) ∈
(
Rn+1)2 |‖u‖ = 1 and 〈u, p〉 = 0

}
(‖.‖ and 〈., .〉 denoting respectively the Euclidean norm and scalar product in Rn+1), 
we define a contact form β by putting β(u,p,z) := dz − pdu for all (u, p, z) ∈ TSn × R. 
Moreover

f : URn+1 = Rn+1 × Sn → TSn × R

(x, u) �→ (u, x− 〈x, u〉u, 〈x, u〉)

is a diffeomorphism such that f∗β = α, and hence a contactomorphism from 
(
URn+1, α

)
to (TSn × R, β).

A metric contact manifold is defined to be a tuple (M, g, α, J), where (M, g) is a 
Riemannian manifold, α a smooth 1-form on M and J a section of the endomorphism 
bundle End (TM) which satisfy the three following conditions:

(i) α (ξα) = 1, where ξα is the metric dual of α;
(ii) dα (X,Y ) = g (JX, Y ) for any vector fields X, Y on M ;
(iii) J2X = −X + α (X) ξα for any vector field X on M .

Then (M,Ker (α)) is a contact manifold (i.e. α ∧ (dα)n �= 0 on M), ξα is the Reeb 
vector field associated to α, Jξα = 0 and g is determined by α and J through the 
equality g (X,Y ) = α (X)α (Y ) + dα (X, JY ), (see e.g. [14]).

Example. In the case of hedgehogs of Rn+1, we will consider the metric contact manifold (
URn+1, g, α, J

)
, where g is the Riemannian product metric on URn+1 = Rn+1×Sn and 

J : TURn+1 → TURn+1, (X,Q) �→ (Q, 〈X, q〉 q −X).

Hedgehogs as Legendrian fronts

Let us consider first the case where (M, g) =
(
Rn+1, gcan

)
, where gcan = 〈., .〉 is 

the canonical Euclidean metric. Let Hh be a hedgehog of Rn+1 with support function 
h ∈ C∞ (Sn;R). Let us recall that its natural parametrization xh : Sn → Rn+1, u �→
xh (u) = h(u)u + (∇h) (u) can be interpreted as the inverse of its Gauss map. Thus it 
appears that
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ih : Sn → URn+1 = Rn+1 × Sn

u �→ (xh (u) , u)

is the immersion of a Legendrian submanifold in URn+1 of which Hh is the Legendrian 
front in Rn+1 and xh = π ◦ ih the corresponding Legendrian map. Recall that on URn+1, 
the contact form and the associated Reeb vector field are respectively given by

α(x,u) := 〈u, dx〉 =
n+1∑
i=0

uidxi and ξ (x, u) := (u; 0TuS
n) ,

for all (x, u) ∈ URn+1, where (x1, · · · , xn+1; u1, · · · , un+1) are the canonical coordinate 
functions on URn+1 = Rn+1 × Sn ⊂ R2n+2.

Thus, hedgehogs of Rn+1 are the Legendrian fronts of those Legendrian submanifolds 
of 

(
URn+1, α

)
whose Legendrian maps can be interpreted as the inverse of the Gauss 

map of their image (i.e. of the Legendrian front).

Sn
ih
→ ih (Sn) ⊂

(
URn+1,Ker (α)

)
xh ↘ ↓ π

Hh ⊂ Rn+1.

This can of course be adapted to hedgehogs of other spaces. We can, for instance, 
replace:

•
(
Rn+1, 〈., .〉

)
by the Lorentzian–Minkowski (n + 1)-space Ln+1 =

(
Rn+1, 〈., .〉L

)
, 

where

〈x, x′〉L =
n∑

k=0

xkx
′
k − tt′,

for all x := ((x1, . . . , xn) , t) and x := ((x′
1, . . . , x

′
n) , t′) in Ln+1 = Rn × R;

• Sn by Hn :=
{
x = ((x1, . . . , xn) , t) ∈ Ln+1 |〈x, x〉L = −1

}
;

• URn+1 = Rn+1 × Sn by T−1Hn := Ln+1 × Hn;
• xh : Sn → R by xh : Hn → Ln+1, v �→ xh (v) = (∇h) (v) − h(v)v;
• ih : Sn → URn+1 by ih : Hn → T−1Hn, v �→ (xh (v) , v);
• α(x,u) by α(x,v) := 〈v, dx〉L and ξα (x, u) by ξα (x, v) := (v; 0TvHn).

Symplectic and almost-hermitian structures

A symplectic structure on a 2n-dimensional C∞-manifold M is a closed differentiable 
2-form ω that is nondegenerate (i.e. such that: ω (u, v) = 0 for all u ∈ TmM implies 
v = 0TmM ). The pair (M,ω) is then called a symplectic manifold.
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A submanifold L of a symplectic manifold (M,ω) is said to be Lagrangian if the 
restriction of ω to L is equal to 0 and dimL = (dimM)/2. A fibration π : E → B of 
a symplectic manifold E is called a Lagrangian fibration if all the fibers are Lagrangian 
submanifolds. Let i : L → E be an immersed Lagrangian submanifold L in the total space 
of a Lagrangian fibration π : E → B. The restriction of π to L, that is x = π ◦ i : L → B

is called a Lagrangian map.
Given any contact manifold (M,α), there is a canonical symplectic structure on M×R, 

which is given by ω = d (etα). We say that (M × R, d (etα)) is the symplectization of the 
contact manifold (M,α).

Example. The symplectization of the contact manifold 
(
UR3, α

)
, where α(y,u) := 〈u, dy〉

for all (y, u) ∈ R3 × S2, can be regarded as the symplectic manifold 
(
L4 × S2, ω

)
, where 

ω(y,t,u) = d 
(
etα(y,u)

)
, and πL : L4 × S2 → R3, (y, t, u) �→ y is a Lagrangian fibration. 

Moreover, for any h ∈ C∞ (
S2;R

)
,

Ih : S2 × R → L4 × S2

(u, t) �→ (xh−t (u) , t, u)

appears to be the immersion of a Lagrangian submanifold Lh := Ih
(
S2 × R

)
in L4 × S2. 

Note that this Lagrangian submanifold Lh of L4×S2 is obtained by lifting to L4×S2 the 
family (ih−t)t∈R

of Legendrian immersions ih−t : S2 → UR3, u �→ (xh−t (u) , u) whose 
Legendrian fronts xh−t

(
S2) form the family of parallel hedgehogs (Hh−t)t∈R

in R3.

A symplectomorphism from a symplectic manifold (M1, ω1) to a symplectic manifold 
(M2, ω2) is a diffeomorphism f : M1 → M2 that preserves the symplectic structure, i.e. 
such that f∗ω2 = ω1.

Example. It is easy to check that

f :
(
L4 × S2, d (etα)

)
→

(
T
(
S2)× R2, d (etβ)

)
(y, t, u) �→ (u, y − 〈y, u〉u, 〈y, u〉 , t)

is a symplectomorphism between the symplectizations of 
(
UR3, α

)
and 

(
T
(
S2)× R, β

)
.

An almost complex manifold is defined to be a tuple (M,J), where (M, g) is a Rie-
mannian manifold and J an almost-complex structure on TM , that is, a vector bundle 
endomorphism J : TM → TM such that J2 = −1. An almost Hermitian manifold is 
defined to be a tuple (M, g, J), where (M,J) is an almost complex manifold and g an 
almost-hermitian metric on (M,J), that is, a Riemannian metric on M satisfying:

∀m ∈ M , ∀ (X,Y ) ∈ (TmM)2 , g (X, JY ) = −g (JX, Y ) .

To any metric contact manifold (M, g, α, J), we can also associate a manifold M̂ =
M × R which carries an almost-hermitian structure 

(
ĝ, Ĵ

)
extending the one we have 
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on the contact distribution V = Ker (α): indeed, 
(
Ĉ, ĝ, Ĵ

)
is almost Hermitian if we let 

ĝ = g + dt2, Ĵ|V = J|V , Ĵξα = −∂t and Ĵ∂t = ξα, where t is the coordinate on the R
factor (see e.g. [14]).

2.2.2. Marginally trapped hedgehogs of an associated Lagrangian submanifold
Given any h ∈ C∞ (

S2;R
)
, let us consider the marginally trapped hedgehog H∂h of L4

with support differential ∂h := dh/
√

2. As we have seen above, 
(
L4 × S2, ω := d (etα)

)
can be regarded as the symplectization of the contact manifold 

(
UR3, α

)
, where α :=

〈u, dy〉, πL : L4 × S2 → R3, (y, t, u) �→ y is a Lagrangian fibration and Ih : S2 ×
R → L4 × S2, (u, t) �→ (xh−t (u) , t, u) is the immersion of a Lagrangian submanifold 
Lh := Ih

(
S2 × R

)
in L4 × S2. If we endow the symplectic manifold 

(
L4 × S2, ω

)
with 

the Lorentzian metric gL := g − dt2, where g is the Riemannian product metric on 
UR3 = R3 × S2., then

i∂h : S2 →
(
L4 × S2, gL

)
u �→ (x∂h (u) , u) =

(
∇h (u) + ∂2h (u)u, h (u) − ∂2h (u) , u

)
is the parametrization of a marginally trapped surface I∂h := i∂h

(
S2) included in the 

Lagrangian submanifold Lh of L4 ×S2: indeed, I∂h is spacelike (i.e. its induced metric is 
Riemannian) and its mean curvature vector Hi∂h

is lightlike at each point. More precisely, 
it is a routine to check that:

(i) i∗∂hg =
(
1 + 1

4 (R1 −R2)2
)
gS, where gS is the standard metric on S2, g the first 

fundamental form on I∂h, i∗∂hg the pullback of g along i∂h and R1 (u) , R2 (u) the principal 
radii of curvature of Hh at xh (u);

(ii) for all u ∈ S2, Hi∂h
(i∂h (u)) ∈ R (ξα − ∂t), where ξα := (u, 0, 0TuS

2), ∂t :=
(0, 1, 0TuS

2) and hence ξα − ∂t := (u,−1, 0TuS
2) ∈ Ti∂h(u)I∂h ⊂ L4 × TuS

2. Thus, H∂h

is the image of I∂h under the projection πL : L4 × S2 → L4, and we have the following 
commutative diagram:

S2
i∂h
→ I∂h marginally trapped in Lh ⊂

(
L4 × S2, gL

)
x∂h ↘ ↓ πL

H∂h marginally trapped in L4.

In other words, any marginally trapped hedgehog x∂h : S2 → H∂h ⊂ L4 lifts to a 
marginally trapped surface I∂h of the Lagrangian submanifold Lh of 

(
L4 × S2, ω, gL

)
that is deduced from the family of parallel hedgehogs (Hh−t)t∈R

.
Now, if M is another 6-dimensional C∞-manifold endowed with a symplectic structure 

ωM and a Lorentzian metric gM , and if f : L4 × S2 → M is a diffeomorphism preserving 
both the symplectic structure and the Lorentzian metric, then f (I∂h) is a marginally 
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trapped surface of the Lagrangian submanifold f (Lh) of (M,ωM , gM ). For instance, if 
we use the diffeomorphism

f : L4 × S2 → T
(
S2)× R2

(y, t, u) �→ (u, y − 〈y, u〉u, 〈y, u〉 , t) ,

to transport the Lorentzian metric gL to a Lorentzian metric gM on T
(
S2) × R2, then 

we see that

j∂h : S2 →
(
T
(
S2)× R2, d (etβ) , gM

)
u �→

(
u,∇h (u) , ∂2h (u) , h (u) − ∂2h (u)

)
defines a marginally trapped surface j∂h

(
S2) of the Lagrangian submanifold of (

T
(
S2)× R2, d (etβ)

)
that is parametrized by:

Jh : S2 × R → T
(
S2)× R2

(u, t) �→
(
j1
h−t (u) , t

)
:= (u,∇h (u) , h (u) − t, t) .

Let us conclude this section with a remark concerning the definition of the marginally 
trapped hedgehog x∂h : S2 → H∂h ⊂ L4, where L4 is identified with Σ. For any u ∈ S2, 
x = x∂h (u) is the (possibly reduced to a point) cooriented sphere of R3 that satisfies 
the following system of conditions:{

(1) x ∈ Lh (u)
(2) 〈x,ΔuL〉 = δ (dh) (u) ,

(see Section 1). The first condition simply ensures that the ‘contact element’ ih (u) :=
(xh (u) , u) is in oriented contact with the sphere x∂h (u) (i.e. xh (u) belongs to the 
sphere x∂h (u) and u is the unit normal to x∂h (u) at xh (u)). The second condition (the 
co-contact one) then ensures that x∂h (u) is more precisely the oriented middle sphere 
(or unoriented middle point) S

(
ch (u) ;R(1,h) (u)

)
.

3. Proof of the main results

We first prove Theorem 1 and Theorem 6, which is its analogue in M4.

Proof of Theorem 1. In this proof, ∇S (resp. ∇) stands for the gradient on S2 (resp. 
R3), ΔS (resp. Δ) for the Laplace–Beltrami operator on S2 (resp. R3 and the Laplace–
Beltrami operator of a vector function X : S2 → L4, u �→ (Xi (u))4i=1 is understood 
to be the vector function ΔSX : S2 → L4, u �→ (ΔSXi (u))4i=1, where ΔSXi is the 
Laplace–Beltrami operator of the coordinate function Xi in the intrinsic metric on S2, 
(1 ≤ i ≤ 4).
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(i) For all t ∈ R, let x : S2 → L4 be any C∞ map such that

x (u) ∈ Lh+t (u) := {lh+t (u)} + RuL

for all u ∈ S2. Then there exists some λ ∈ C∞ (
S2;R

)
such that x is of the form

Xλ : S2 → L4

u �→ (∇Sh (u) , h (u) − t) + λ (u) (u,−1) = (xh (u) + f (u)u, t− f (u)) ,

where f := λ − h. For all u ∈ S2, we have:

ΔSXλ (u) = (ΔSxh (u) + ΔS (f (u)u) ,− (ΔSf) (u)) .

Now, ΔSxh = ΔS (∇ϕ) = Δ (∇ϕ) = ∇ (Δϕ), where ϕ is the positively 1-homogeneous 
extension of h to R3 \ {0}, that is,

ϕ (x) := ‖x‖h
(

x

‖x‖

)
,

for x ∈ R3 \ {0}, where ‖.‖ is the Euclidean norm on R3. Indeed, ∇ϕ is positively 
0-homogeneous on R3 \ {0} and equal to xh on S2. Thus

〈ΔSxh (u) , u〉 = − (Δϕ) (u) = − (ΔSh + 2h) (u) ,

for u ∈ S2, since Δϕ is positively −1-homogeneous on R3 \ {0}. Besides, we have:

ΔS (f (u)u) = (ΔSf) (u)u + 2 (〈(∇Sf) (u) , (∇Sxi) (u)〉)3i=1 + f (u) (ΔSidS2) (u)

= (ΔSf − 2f) (u)u + 2 (∇Sf) (u) ,

for all u ∈ S2. Therefore, we have:

〈ΔSXλ (u) , uL〉L = 0 ⇔ − (ΔSh + 2h) (u) + (ΔSf − 2f) (u) − (ΔSf) (u) = 0
⇔ − (ΔSh + 2h) (u) + 2 (h− λ) (u) = 0
⇔ λ = −1

2 (ΔSh) (u) ,

for all u ∈ S2. Thus

x (u) = Xλ (u) = lh+t (u) − (ΔSh) (u)
2 (u,−1) = lh+t (u) + δ (∂h) (u)uL,

for all u ∈ S2.
(ii) We know that: x (u) = (xh (u) , t)−R(1,h) (u) (u,−1) for all u ∈ S2, where R(1,h) :=

h − Δh
2 = 1

2 (R1 + R2) is the mean radius of principal curvature of Hh. From this we 
deduce that
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(Tux) (v) = ((Tuxh) (v) , 0) −
(
dR(1,h)

)
u

(v) (u,−1) −R(1,h) (u) (v, 0) ;

and thus that

〈(Tux) (v) , (Tux) (v)〉L =
〈
(Tuxh) (v) −R(1,h) (u) v, (Tuxh) (v) −R(1,h) (u) v

〉
,

for all v ∈ TuS
2. Now, considering an orthonormal basis (e1, e2) of TuS

2 made of eigen-
vectors of Tuxh (i.e., (Tuxh) (ei) = Ri (u) ei for i ∈ {1, 2}), we conclude that: ∀v ∈ TuS

2,

(x∗g)u (v, v) := 〈(Tux) (v) , (Tux) (v)〉L = 1
4 (R1 −R2) (u)2 gS (v, v) .

(iii) We know that: ∀u ∈ S2, x (u) = (xh (u) , t) − f (u) (u,−1), where f = R(1,h). 
From this, we deduce that: ∀u ∈ S2,

(ΔSx) (u) = (ΔSxh (u) − ΔS (f (u)u) , (ΔSf) (u)) .

Now: ∀u ∈ S2, ΔS (f (u)u) = (ΔSf − 2f) (u)u + 2 (∇Sf) (u), (see above the proof 
of (i)). Besides, ΔSxh = ΔS (∇ϕ) = Δ (∇ϕ) = ∇ (Δϕ), where ϕ is the positively 
1-homogeneous extension of h to R3 \ {0} (see ib.), so that ΔSxh (u) = ∇S (Δϕ) (u) −
(Δϕ) (u)u = 2 (∇Sf (u) − f (u)u) for all u ∈ S2, since Δϕ is positively −1-homogeneous 
on R3 \ {0}, and equal to 2f on S2. Therefore: ∀u ∈ S2,

(ΔSx) (u) = − (ΔSf) (u) (u,−1) = −
(
ΔSR(1,h)

)
(u) (u,−1) ∈ RuL.

We know that under a conformal change of metric g̃ = e2φg on a surface M2, (
ψ ∈ C∞ (

M2;R
))

, the Laplace–Beltrami operator Δg transforms according to the for-
mula

Δg̃f = e−2φΔgf for all f ∈ C∞ (
M2;R

)
.

Above, we have demonstrated that x∗g = 1
4 (R1 −R2) (u)2 gS =

(
R2

(1,h) −Rh

)
gS , where 

Rh := R1R2 is the curvature function of Hh, and that (ΔSx) (u) = − 
(
ΔSR(1,h)

)
(u)×

(u,−1) for all u ∈ S2. Therefore

(Δx∗gx) (u) = −
ΔSR(1,h)

R2
(1,h) −Rh

(u) (u,−1)

outside umbilical points of Hh (i.e., for all u ∈ S2 such that R1 (u) �= R2 (u)). We also 
know that the mean vector field of any surface X : Ω ⊂ S2 → L4, u �→ (Xi (u))4i=1
is given by 

−→
HX = 1

2 (ΔX) = 1
2 (ΔXi)4i=1, where ΔXi is the Laplace–Beltrami op-

erator of the coordinate function in the intrinsic metric of the surface. Therefore: 
∀u ∈ S2� 

{
u ∈ S2 |R1 (u) = R2 (u)

}
,



Y. Martinez-Maure / Advances in Applied Mathematics 101 (2018) 320–353 347
−→
Hx (u) = −

ΔSR(1,h)

2
(
R2

(1,h) −Rh

) (u) (u,−1) =
∂2R(1,h)

R2
(1,h) −Rh

(u) (u,−1) ∈ R−→uL. �

Proof of Theorem 6. The steps of the proof are the same as those in the proof of Theo-
rem 1. There is just some slight changes in formulas. For the convenience of the reader, 
we resume below the different steps of the proof.

In this proof, ∇H (resp. ∇L) stands for the gradient on H2 (resp. L3), ΔH for 
the Laplace–Beltrami operator on H2, and � for the d’Alembertian (or wave opera-
tor) on L3. Let (x1, x2, x3) be the standard coordinates on L3. For all differentiable 
function ψ : L3 → R and all x ∈ L3, ∇Lψ (x) thus denote the vector with en-
tries 

(
∂ψ
∂x1

(x) , ∂ψ
∂x2 (x) ,− ∂ψ

∂x3
(x)

)
in L3. For its part, the d’Alembertian has the form 

� := ∂2

∂x2
1

+ ∂2

∂x2
2
− ∂2

∂x2
3
. Besides, the Laplace–Beltrami operator of a vector function X :

H2 → M4, u �→ (Xi (u))4i=1 is understood to be the vector function ΔHX : H2 → M4, 
u �→ (ΔHXi (u))4i=1, where ΔHXi is the Laplace–Beltrami operator of the coordinate 
function Xi in the intrinsic metric on H2, (1 ≤ i ≤ 4).

(i) For all t ∈ R, let x : H2 → M4 be any C∞ map such that

x (v) ∈ Lh+t (v) := {lh+t (v)} + RvL,

for all v ∈ H2. Then there exists some λ ∈ C∞ (
S2;R

)
such that x is of the form

Xλ : H2 → M4

v �→ (∇Hh (v) ,−h (v) − t) + λ (v) (v,−1) = (xh (v) + f (v) v,−f (v) − t) ,

where f := h + λ. For all v ∈ H2, we have:

ΔHXλ (v) = (ΔHxh (v) + ΔH (f (v) v) ,− (ΔHf) (v)) .

Now, ΔHxh = ΔH (∇Lϕ) = � (∇Lϕ) = ∇ (�ϕ), where ϕ is the positively 1-homogeneous 
extension of h to U =

{
x ∈ L3 |〈x, x〉L < 0

}
, that is,

ϕ (v) := ‖x‖L h

(
x

‖x‖L

)
,

for x ∈ U , where ‖x‖L :=
√

−〈x, x〉L. Indeed, ∇ϕ is positively 0-homogeneous on U and 
equal to xh on H2. Thus

〈ΔHxh (v) , v〉L = − (�ϕ) (v) = (−ΔHh + 2h) (v) ,

for v ∈ H2, since �ϕ is positively −1-homogeneous on U . Besides, we have:

ΔH (f (v) v) = (ΔHf) (u)u + 2 (〈(∇Hf) (v) , (∇Hxi) (v)〉L)3
i=1 + f (v) (ΔHidH2) (v)

= (Δ f + 2f) (v) v + 2 (∇ f) (v) ,
H H
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for all v ∈ H2. Therefore, we have:

〈ΔHXλ (v) , vM 〉M = 0 ⇔ (−ΔHh + 2h) (v) − (ΔHf + 2f) (u) + (ΔHf) (v) = 0
⇔ − (−ΔHh + 2h) (u) − 2 (h + λ) (v) = 0
⇔ λ = −1

2 (ΔHh) (v) ,

for all v ∈ H2. Thus

x (v) = Xλ (v) = lh+t (v) − (ΔHh) (v)
2 (v,−1) = lh+t (v) + δ (∂h) (v) ,

for all v ∈ H2.
(ii) We know that x (v) = (xh (v) , t) − R(−1,h) (v) (v,−1) for all v ∈ H2, where 

R(−1,h) := −h + ΔHh
2 = 1

2 (R1 + R2) is the mean radius of principal curvature of Hh. 
From this we deduce that

(Tvx) (w) = ((Tvxh) (w) , 0) −
(
dR(−1,h)

)
v
(w) (v,−1) −R(−1,h) (v) (w, 0) ;

and thus that

〈(Tvx) (w) , (Tvx) (w)〉M =
〈
(Tuxh) (v) −R(1,h) (u) v, (Tuxh) (v) −R(1,h) (u) v

〉
,

for all w ∈ TvH2. Now, considering an orthonormal basis (e1, e2) of TvH2 made of eigen-
vectors of Tvxh (i.e., (Tvxh) (ei) = Ri (v) ei for i ∈ {1, 2}), we conclude that: ∀w ∈ TvH2,

(x∗g)v (w,w) := 〈(Tvx) (w) , (Tvx) (w)〉L = 1
4 (R1 −R2) (u)2 gH (v, v) .

(iii) We know that: ∀v ∈ H2, x (v) = (xh (v) ,−t) − f (v) (v,−1), where f = R(−1,h). 
From this, we deduce that: ∀v ∈ H2,

(ΔHx) (v) = (ΔHxh (v) − ΔH (f (v) v) , (ΔHf) (v)) .

Now: ∀v ∈ H2, ΔH (f (v) v) = (ΔHf + 2f) (v) v + 2 (∇Hf) (v), (see above the proof 
of (i)). Besides, ΔHxh = ΔH (∇Lϕ) = � (∇Lϕ) = ∇ (�ϕ), where ϕ is the positively 
1-homogeneous extension of h to U =

{
x ∈ L3 |〈x, x〉L < 0

}
(see ib.), so that ΔHxh (v) =

∇H (�ϕ) (v) + (�ϕ) (v) v = 2 (∇Hf (v) + f (v) v) for all v ∈ H2, since �ϕ is positively 
−1-homogeneous on U , and equal to 2f on H2. Therefore: ∀v ∈ H2,

(ΔHx) (v) = − (ΔHf) (v) (v,−1) = −
(
ΔHR(−1,h)

)
(v) (v,−1) ∈ R−→vM .

Above, we have demonstrated that x∗g = 1
4 (R1 −R2) (v)2 gH =

(
R2

(−1,h) −Rh

)
gH , 

where Rh := R1R2 is the curvature function of Hh, and that (ΔHx) (v) =
− 
(
ΔHR(−1,h)

)
(v) (v,−1) for all v ∈ H2. Therefore
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(Δx∗gx) (v) = −
ΔHR(−1,h)

R2
(−1,h) −Rh

(v) (v,−1)

outside umbilical points of Hh (i.e., for all v ∈ H2 such that R1 (v) �= R2 (v)). We also 
know that the mean vector field of any surface X : Ω ⊂ H2 → M4, v �→ (Xi (v))4i=1
is given by 

−→
HX = 1

2 (ΔHX) = 1
2 (ΔHXi)4i=1, where ΔHXi is the Laplace–Beltrami 

operator of the coordinate function in the intrinsic metric of the surface. Therefore: 
∀v ∈ H2� 

{
v ∈ H2 |R1 (v) = R2 (v)

}
,

−→
Hx (v) = −

ΔHR(−1,h)

2
(
R2

(−1,h) −Rh

) (v) (v,−1) =
∂2R(−1,h)

R2
(−1,h) −Rh

(v) (v,−1) ∈ R−→vM . �

Let us now turn to the proofs of Theorem 2 and Theorem 5.

Proof of Theorem 2. Since the mixed curvature function R : C∞ (
S2,R

)2 → R, (f, g) �→
R(f,g) is bilinear and symmetric, it follows that the same holds true for the mixed La-
guerre area

L : (∂H)2 �→ R

(∂f, ∂g) �→
∫
S2

(
R(1,f)R(1,g) −R(f,g)

)
dσ.

Furthermore, for all ∂h ∈ ∂H, we have:

(s (∂h) = 0) ⇐⇒ (Hh is totally umbilical) ⇐⇒ (∂h = 0∂H) .

This completes the proof. �
Proof of Theorem 5. For any h ∈ C4 (S2,R

)
, we know from (ii) of Theorem 1 (which 

remains true under our present smoothness assumption) that x∗g = 1
4 (R1 −R2)2 gS , 

where gS is the standard metric on S2, g the first fundamental form on x 
(
S2), x∗g the 

pullback of g along x, and R1 (u) , R2 (u) the principal radii of curvature of Hh at xh (u)
for all u ∈ S2. Therefore

s (∂h) = −L (∂h) = −1
4

∫
S2

(R1 −R2)2 dσ.

Now R1 = λ1 + h and R2 = λ2 + h, where λ1 (u), λ2 (u) denote the eigenvalues of the 
Hessian of h at u for all u ∈ S2. Hence:

s (∂h) = −1
4

∫
S2

(λ1 − λ2)2 dσ = 1
4

∫
S2

(
4 (Δ22h) − (ΔSh)2

)
dσ,

where Δ2 and Δ22 are respectively the Laplace–Beltrami operator and the Monge–
Ampère operator on S2 (that is, respectively the sum and the product of the eigenvalues 
λ1, λ2 of the of h). From the equality
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∫
S2
Rhdσ =

∫
S2
h.R(1,h)dσ,

which is a direct consequence of the symmetry of the mixed volume, we obtain∫
S2

(Δ22h) dσ = −1
2

∫
S2
h (ΔSh) dσ,

after development and simplification, and then∫
S2

(Δ22h) dσ = 1
2

∫
S2

(∇h)2 dσ =
∫
S2

(−→
∂h

)2
dσ

by integrating by parts. It follows that:

s (∂h) =
∫
S2

((−→
∂h

)2
−
(
∂2h

)2)
dσ

Note that the integration by parts formula for functions f, g ∈ C2 (S2;R
)

can be 
written as ∫

S2

−→
∂f.

−→
∂gdσ =

∫
S2
f
(
∂2g

)
dσ.

Therefore ∫
S2

((−→
∂h

)2
−

(
∂2h

)2)
dσ =

∫
S2

((−→
∂h

)2
−−→
∂h.

−−−−−→
∂
(
∂2h

))
dσ

=
∫
S2

−→
∂h.

−−−−−−−−→
∂
(
h− ∂2h

)
dσ

=
∫
S2

−→
∂h.

−−−−→
∂R(1,h)dσ,

since R(1,h) = h + (ΔSh)
2 = h − Δh

2 = h − ∂2h. �
4. Further remarks and problems

4.1. Curvature function of marginally trapped hedgehogs

In analogy to the cases of ordinary hedgehogs and convex bodies of R3, we will say 
that a marginally trapped hedgehog H∂h of L4 has the curvature function R−→

∂h : S2 → R

if its signed surface area measure

s∂h : B
(
S2) → R

ω �−→ −
∫ (

R2
(1,h) −Rh

)
dσ,
ω
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where B
(
S2) is the Borel algebra on S2, has R∂h as a density with respect to spherical 

Lebesgue measure σ. In other words, H∂h has the curvature function R−→
∂h

= −
(
R2

(1,h) −
Rh

)
= −1

4 (R1 −R2)2, where R1 and R2 are the principal radii of curvature of Hh.

Proposition 3. Let h ∈ C∞ (
S2;R

)
. The curvature function of the marginally trapped 

hedgehog H∂h of L4 can be expressed in the form

R−→
∂h

=
−→
∂h2 +

−→
∂h. (∇ ◦ div)

(−→
∂h

)
+ 1

2

((
div

−→
∂h

)2
− (div ◦∇)

(−→
∂h2

))
,

where div stands for the divergence operator on S2.

This expression of R−→
∂h

has to be compared with the following one, which gives an 
expression for the curvature function of an ordinary hedgehog Hh of R3:

Rh = h2 + h (div ◦∇) (h) + 1
2

(
(tr Hh)2 − tr

(
H2

h

))
,

where tr stands for the trace operator and Hh is the Hessian of h. Of course, as for 
ordinary hedgehogs of R3, we can define a mixed curvature function for marginally 
trapped hedgehogs of L4:

R : (∂H)2 → C∞ (
S2;R

)
,
(−→
∂f,

−→
∂g

)
�−→ R(−→

∂f,
−→
∂g

) :=
(
R(f,g) −R(1,f)R(1,g)

)
.

Proof of Proposition 3. We know that

R−→
∂h

= −1
4 (λ1 − λ2)2 = 1

4

(
(tr Hh)2 − 2tr

(
H2

h

))
,

where λ1 and λ2 are the eigenvalues of Hh. Now, in the present case, the classical 
Bochner–Lichnerowicz–Weitzenböck formula can be rewritten in the form

ΔS

(−→
∂h2

)
= 2

−→
∂h. (∇ ◦ div)

(−→
∂h

)
+ tr

(
H2

h

)
+ 2

−→
∂h2,

where ΔS = div ◦∇ is the Laplace–Beltrami operator on S2. Combining the above for-
mulas yields the desired result. �

Now let us mention briefly how the curvature function of marginally trapped hedge-
hogs of L4 is also involved in the volume of focal surfaces of ordinary hedgehogs of R3. 
Let h ∈ C∞ (

S2;R
)
. The focal surface, say Fh, of Hh is defined as the locus of the centers 

of principal curvature of Hh (or, which is equivalent, as the envelope of its normal lines). 
In [8], we defined the volume of Fh by:

v (∇h) := −
∫

iFh
(x) dx,
R3
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where iFh
(x) := 1 − 1

2νh(x), denoting by νh(x) the number of oriented normal lines to 
Hh through x. Note that Fh and hence its volume only depend on ∇h. In fact, from [8, 
Theorems 2 and 3], we have:

v (∇h) = 4
3

∫
S2

(
−R−→

∂h

) 3
2 dσ

and the geometric inequality

4L (∂h)3 ≤ 9πv (∇h)2 .

4.2. Minkowski problem for marginally trapped hedgehogs

When restricting to the class of convex bodies of Rn+1 whose surface area measures 
have a density with respect to spherical Lebesgue measure, the classical Minkowski prob-
lem can be formulated as that of the existence, uniqueness and regularity of convex bodies 
of this class whose curvature function is prescribed (see e.g. [13, Section 8.2] for more 
details, results and a complete bibliography). This Minkowski problem admits a natural 
extension to hedgehogs of Rn+1, which we considered in [8]. The extension to hedgehogs 
is much more difficult since it involves the study of a Monge–Ampère equation of mixed 
type (instead of a Monge–Ampère equation of elliptic type in the convex case). Since 
we have defined the curvature function R−→

∂h
of any marginally trapped hedgehog H∂h

of L4 by analogy to the cases of hedgehogs and convex bodies of R3, it is now natural 
to consider the analogue of the Minkowski problem for marginally trapped hedgehogs 
(modulo some slight changes in the statement, as in the Minkowski problem for ordinary 
hedgehogs, due for instance to the fact that for any h ∈ C∞ (

S2;R
)
, ∂ (−h) and ∂h

are the respective support differentials of two marginally trapped hedgehogs H∂(−h) and 
H∂h of L4 that have the same curvature function R−−−−→

∂(−h) = R−→
∂h

and are such that

H∂(−h) = s (H∂h) ,

where s is the symmetry with respect to the origin in L4).
This problem is certainly very difficult since to solve it properly, it would be necessary 

in particular to know if any convex closed and sufficiently smooth surface of R3 admits 
at least two umbilical points, that is, to have a complete solution to the Caratheodory 
conjecture.
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