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Abstract. The classical Minkowski problem has a natural extension to hedge-

hogs, that is to Minkowski differences of closed convex hypersurfaces. This extended

Minkowski problem is much more diffi cult since it essentially boils down to the ques-

tion of solutions of certain Monge-Ampère equations of mixed type on the unit sphere

Sn of Rn+1. In this paper, we mainly consider the uniqueness question and give first
results.

0. Introduction

The classical Minkowski problem is that of the existence, uniqueness
and regularity of closed convex hypersurfaces of the Euclidean linear
space Rn+1 whose Gaussian curvature (in the sense of Gauss’ defini-
tion) is prescribed as a function of the outer normal vector. In the last
century, this fundamental problem played an important role in the de-
velopment of the theory of elliptic Monge-Ampère equations. Indeed, for
C2+-hypersurfaces (C

2-hypersurfaces with positive Gaussian curvature),
this Minkowski problem is equivalent to the question of solutions of cer-
tain Monge-Ampère equations of elliptic type on the unit sphere Sn of
Rn+1.
Using approximation by convex polyhedra, Minkowski proved the

existence of a weak solution [15]: If K is a continuous positive function
on Sn satisfying the following integral condition∫

Sn

u

K(u)
dσ(u) = 0,

where σ is the spherical Lebesgue measure on Sn, thenK is the Gaussian
curvature of a unique (up to translation) closed convex hypersurface
H. The uniqueness comes from the equality condition in a Minkowski’s
inequality (e.g. [18, p. 397]). The strong solution is due to Pogorelov
[17] and Cheng and Yau [4] who proved independently that: if K is of
class Cm, (m ≥ 3), then the support function of H is of class Cm+1,α for
every α ∈ ]0, 1[.
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This classical Minkowski problem has a natural extension to hedge-
hogs, that is to Minkowski differencesH = K−L of closed convex hyper-
surfaces K,L ∈ Rn+1, at least if we restrict ourselves to hypersurfaces
whose support functions are C2. Indeed, the inverse of the Gaussian
curvature of such a hedgehog is well-defined and continuous all over Sn
(see Section 1), so that the following existence question arises naturally:

(Q1) Existence of a C2-solution: What are necessary and suffi cient
conditions for a real continuous function R ∈ C (Sn;R) to be the curva-
ture function (that is, the inverse 1

K
of the Gaussian curvature K) of

some hedgehog H = K − L ?

Now let us expound the uniqueness question. As we shall see later,
for any h ∈ C2 (S2;R), the functions −h and h are the respective sup-
port functions of two hedgehogs H−h and Hh of R3 that have the same
curvature function and are such that

H−h = s (Hh) ,

where s is the symmetry with respect to the origin of R3. Here, we
have to recall that noncongruent hedgehogs of R3 may have the same
curvature function [14]: for instance, the two smooth (but not analytic)
functions f , g defined on S2 by

f (u) :=


exp(−1/z2) if z 6= 0

0 if z = 0
and g (u) :=


sign (z) f (u) if z 6= 0

0 if z = 0,

where u = (x, y, z) ∈ S2, are the support functions of two noncongruent
hedgehogs Hf and Hg of R3 having the same curvature function R :=
1/K ∈ C (S2;R), (cf. Figure 1).

Consequently, we state the uniqueness question as follows:

(Q2) Uniqueness of a C2-solution: Let R ∈ C (Sn;R) be the curva-
ture function of some hedgehog H. What are necessary and suffi cient
conditions on R for H to be uniquely determined (up to parallel trans-
lations and central symmetries, the coorienting normal vector being pre-
served point by point) by R ?

In particular, it would be very interesting to know whether there ex-
ists any pair of noncongruent analytic hedgehogs of R3 with the same
curvature function (by ‘analytic hedgehogs’we mean ‘hedgehogs with
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Figure 1: Noncongruent hedgehogs with the same curvature
function

an analytic support function’). We shall see in Section 1 that this latest
question presents similarities to the open question of knowing whether
there exists any pair of noncongruent isometric analytic closed surfaces
in R3.

For n = 1, the problem is linear and so can be solved without dif-
ficulty [13]. But for n = 2, the problem is already very diffi cult: if
R ∈ C (S2;R) changes sign on S2, the question of existence, uniqueness
and regularity of a hedgehog of which R is the curvature function boils
down to the study of a Monge-Ampère equation of mixed type, a class
of equations for which there is no global result but only local ones by
Lin [7] and Zuily [20]. In the present paper, we are mainly interested in
the uniqueness question. Question (Q2) is too diffi cult to be solved at
the present time and our main purpose will be simply to provide condi-
tions under which two hedgehogs of R3 have distinct curvature functions.

Let H3 be the R-linear space of C2-hedgehogs defined up to a trans-
lation in R3 (by ‘C2-hedgehogs’we mean ‘hedgehogs with a C2 support
function’). Our first result will be the following.

Theorem. Let H and H′ be C2-hedgehogs that are linearly independent
in H3. If some linear combination of H and H′ is of class C2+, then H
and H′ have distinct curvature functions.
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As we shall recall in Section 2, any hedgehog can be uniquely split
into the sum of its centered and projective parts. Our second result
relies on this decomposition of hedgehogs into their centered and pro-
jective parts.

Theorem. Let H and H′ be two C2-hedgehogs that are linearly indepen-
dent in H3 and the centered parts of which are nontrivial (i.e., distinct
from a point) and proportional to one and the same convex surface of
class C2+. Then H and H′ have distinct curvature functions.

An immediate consequence will be that:

Corollary. Two C2-hedgehogs of nonzero constant width that are lin-
early independent in H3 have distinct curvature function.

Our last result relies on the extension to hedgehogs of the notion of
mixed curvature function, which will be recalled in Section 1.

Theorem. Let H and H′ be analytic (resp. projective C2) hedgehogs
of R3 that are linearly independent in H3. If the mixed curvature func-
tion of H and H′ does not change sign on S2, then H and H′ have
distinct curvature functions.

In Section 1, we shall begin by recalling some basic definitions and
facts. Later, we shall present what is already known on the Minkowski
problem extended to hedgehogs. Lastly, we shall see different ways of
constructing pairs of non-congruent hedgehogs having the same curva-
ture function.
Section 2 will be devoted to the statement of the main results and

Section 3 to the proofs and further remarks.
The author wishes to thank an anonymous referee for his careful

reading and useful comments that improved the presentation of the pa-
per.

1. Basic facts and observations on the extended Minkowski
problem

As is well-known, every convex body K ⊂ Rn+1 is determined by its
support function hK : Sn −→ R, where hK (u) is defined by hK (u) =
sup {〈x, u〉 |x ∈ K }, (u ∈ Sn), that is, as the signed distance from the
origin to the support hyperplane with normal vector u. In particular,
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every closed convex hypersurface of class C2+ (i.e., C
2-hypersurface with

positive Gaussian curvature) is determined by its support function h
(which must be of class C2 on Sn [18, p. 111]) as the envelope Hh of the
family of hyperplanes with equation 〈x, u〉 = h(u). This envelope Hh is
described analytically by the following system of equations{

〈x, u〉 = h(u)
〈x, . 〉 = dhu(.)

.

The second equation is obtained from the first by performing a partial
differentiation with respect to u. From the first equation, the orthogonal
projection of x onto the line spanned by u is h (u)u and from the second
one, the orthogonal projection of x onto u⊥ is the gradient of h at u
(cf. Figure 2). Therefore, for each u ∈ Sn, xh (u) = h(u)u + (∇h) (u) is
the unique solution of this system.
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Figure 2: Hedgehogs as envelopes parametrized by their
Gauss map

Now, for any C2-function h on Sn, the envelope Hh is in fact well-
defined (even if h is not the support function of a convex hypersurface).
Its natural parametrization xh : Sn → Hh, u 7→ h(u)u+ (∇h) (u) can be
interpreted as the inverse of its Gauss map, in the sense that: at each
regular point xh (u) of Hh, u is a normal vector to Hh. We say that Hh

is the hedgehog with support function h (cf. Figure 3). Note that xh
depends linearly on h.
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Figure 3: A hedgehog with a C2-support function

Hedgehogs with aC2-support function can be regarded as the Minkowski
differences of convex hypersurfaces (or convex bodies) of class C2+. In-
deed [6], given any h ∈ C2 (Sn;R), for all large enough real constant r,
the functions h+ r and r are support functions of convex hypersurfaces
of class C2+ such that h = (h+ r)− r.
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Figure 4: Hedgehogs as differences of convex bodies of class C2+

In fact, we can introduce a more general notion of hedgehogs by re-
garding hedgehogs of Rn+1 as Minkowski differences of arbitrary convex
bodies of Rn+1 [12, 13]. But in the present paper, we shall only consider
hedgehogs with a C2-support function and we will refer to them as ‘C2-
hedgehogs’.
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Gaussian curvature of C2-hedgehogs

Let Hn+1 denote the R-linear space of C2-hedgehogs defined up to
a translation in the Euclidean linear space Rn+1 and identified with
their support functions. Analytically speaking, saying that a hedgehog
Hh ⊂ Rn+1 is defined up to a translation simply means that the first
spherical harmonics of its support function is not specified.
As we saw before, elements of Hn+1 may be singular hypersurfaces.

Since the parametrization xh can be regarded as the inverse of the
Gauss map, the Gaussian curvature Kh of Hh at xh (u) is given by
Kh(u) = 1/ det [Tuxh], where Tuxh is the tangent map of xh at u. There-
fore, singularities are the very points at which the Gaussian curvature
is infinite. For every u ∈ Sn, the tangent map of xh at the point u is
Tuxh = h(u) IdTuSn + Hh(u), where Hh(u) is the symmetric endomor-
phism associated with the hessian of h at u. Consequently, if λ is an
eigenvalue of the hessian of h at u then λ + h (u) is (up to the sign)
one of the principal radii of curvature of Hh at xh (u) and the so-called
‘curvature function’Rh := 1/Kh can be given by

Rh (u) = det [Hij (u) + h (u) δij] , (1)

where δij are the Kronecker symbols and (Hij (u)) the Hessian of h at u
with respect to an orthonormal frame on Sn.
The case n = 2. From (1), the curvature function Rh := 1/Kh

of Hh ⊂ R3 is given by Rh = (λ1 + h) (λ2 + h) = h2 + h∆2h + ∆22h,
where ∆2 denotes the spherical Laplacian and ∆22 the Monge-Ampère
operator (respectively the sum and the product of the eigenvalues λ1, λ2
of the Hessian of h). So, the equation we shall be dealing with will be
the following

h2 + h∆2h+ ∆22h = 1/K.

Note that the so-called ‘mixed curvature function’of hedgehogs of R3,
that is,

R :H23 → C (S2;R)
(f, g) 7→ R(f,g) := 1

2
(Rf+g −Rf −Rg)

is bilinear and symmetric:

(i)∀ (f, g, h) ∈ H33, ∀λ ∈ R, R(f+λg,h) = R(f,h) + λR(g,h);

(ii)∀ (f, g) ∈ H23, R(g,f) = R(f,g).

For any h ∈ H3, we have in particular R−h = Rh. Note that R(1,f) =
1
2

(∆2h+ 2h) is (up to the sign) half the sum of the principal radii of
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curvature of Hh ⊂ R3.

Nonexistence in the Minkowski problem for hedgehogs

The point is that the curvature function Rh := 1/Kh of any C2-
hedgehog Hh of Rn+1 is well-defined and continuous all over Sn, includ-
ing at the singular points of xh, so that the Minkowski problem arises
naturally for hedgehogs. In this paper, we are thus interested in studying
the existence and/or uniqueness of C2-solutions to the Monge-Ampère
equation

Rh = R, (2)

where R is a given real continuous function on Sn.
As in the classical Minkowski problem, the following integral condi-

tion is necessary for the existence of such a solution:∫
Sn
R (u)udσ(u) = 0. (3)

It simply expresses that any C2-hedgehog Hh of Rn+1 is a closed hyper-
surface. But it is no longer suffi cient: for instance, the constant function
equal to −1 on S2 satisfies integral condition (3) but it cannot be the
curvature function of a hedgehog since there is no compact surface with
negative Gaussian curvature in R3.
This extended Minkowski problem leads to the following examples

of Monge-Ampère equations of mixed type for which there is no so-
lution. For every v ∈ S2, the smooth function Fv (u) = 1 − 2 〈u, v〉2
satisfies integral condition (3) but is not a curvature function on S2 [11].
In other words, for every fixed v ∈ S2, the Monge-Ampère equation
h2 + h∆2h+ ∆22h = Fv has no C2-solution on S2. The proof makes use
of orthogonal projection techniques adapted to hedgehogs.

Nonuniqueness in the Minkowski problem for hedgehogs

As recalled in the introduction, two noncongruent hedgehogs of R3
may have the same curvature function. By bilinearity and symmetry in
the arguments of the mixed curvature function R : H23 → C (S2;R), if
Hf and Hg are two hedgehogs of R3 having the same curvature func-
tion then, for all (λ, µ) ∈ R2, the hedgehogs Hλf+µg and Hµf+λg also
have the same curvature function. For instance, from the pair {Hf , Hg}
of noncongruent hedgehogs represented in Figure 1, we deduce the pair
{Hf+2g, H2f+g} of noncongruent hedgehogs (which have the same cur-
vature function) represented in Figure 5.
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Figure 5: Noncongruent hedgehogs with the same curvature
function

A natural but probably diffi cult question is knowing whether there
exists a pair of noncongruent analytic hedgehogs of R3 with the same
curvature function. Let us recall the similar open question of knowing
whether there exists a pair of noncongruent isometric analytic closed
surfaces in R3. Smooth closed surfaces can be isometric without being
congruent: the usual way of constructing such surfaces is by gluing to-
gether smaller congruent pieces. As recalled in [3, p. 131] or [19, p. 366],
we can for instance construct a pair {S, S ′} of noncongruent isometric
closed surfaces of revolution as indicated in Figure 6.
We can assume that S admits a parametrization of the form

x :S2 → S ⊂ R3
u 7→ ρ (u)u,

where ρ is a smooth positive function. Then the hedgehog with support
function h = 1/ρ can be regarded as the dual surface of S [8]. This
hedgehog Hh is a surface of revolution whose generating curve (a plane
hedgehog which has a fish form) is represented in Figure 7. Replacing
the fish’s tail by its image under the symmetry with respect to the dou-
ble point (which by duality corresponds to the plane P ) and rotating the
plane hedgehog that we get around its axis of symmetry, we generate an
other hedgehog which has the same curvature function as Hh without
being congruent to it.
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Figure 6: Noncongruent isometric surfaces of revolution [3, p.
131]

2. Statement of results

Recall that H3 denotes the R-linear space of C2-hedgehogs defined
up to a translation in R3. Our first result below will be a consequence
of the classical Minkowski’s uniqueness theorem.

Theorem 1. Let Hf and Hg be C2-hedgehogs that are linearly indepen-
dent in H3. If some linear combination of Hf and Hg is of class C2+,
then Hf and Hg have distinct curvature functions.

Our second result makes use of the decomposition of hedgehogs into
their centered and projective parts.

Decomposition of a hedgehog into its centered and projec-
tive parts

Recall that a hedgehog Hh of Rn+1 is said to be centered (resp.
projective) if its support function h is symmetric (resp. antisymmetric),
that is, if we have:

∀u∈ Sn, h (−u) = h (u) (resp. h (−u) = −h (u)) .

For instance, the hedgehog Hf (resp. Hg) of R3 that is represented in
Figure 1.a (resp. Figure 1.b) is centered (resp. projective). Geometri-
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Figure 7: Generatrices of revolution hedgehogs with the same
curvature

cally speaking, this means that Hh is centrally symmetric with respect
to the origin (resp. that any pair of antipodal points on the unit sphere
Sn correspond to a same point on the hypersurface Hh = xh (Sn)).
Now, the support function h of Hh ⊂ Rn+1 can be uniquely split into

the sum of its symmetric and antisymmetric parts f and g:

∀u∈ Sn, h (u) = f (u) + g (u) where


f (u) = 1

2
(h (u) + h (−u))

g (u) = 1
2

(h (u)− h (−u))
.

Consequently, any hedgehog Hh of Rn+1 has a unique representation of
the form Hf + Hg, where Hf and Hg are respectively a centered and
a projective hedgehog. We say that Hf and Hg are respectively the
centered and the projective part of Hh.

Theorem 2. Let Hh1 and Hh2 be C
2-hedgehogs that are linearly inde-

pendent in H3 and the centered parts of which are nontrivial (i.e., distinct
from a point) and proportional to one and the same convex surface of
class C2+. Then Hh1 and Hh2 have distinct curvature functions.

A hedgehog Hh of Rn+1 is said to be of constant width if its centered
part has a constant support function. In other words, a hedgehog Hh

of Rn+1 is of constant width if the signed distance between the two
cooriented support hyperplanes that are orthogonal to u ∈ Sn does not
depend on u, that is, if:
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∃r ∈ R,∀u ∈ Sn, h(u) + h(−u) = 2r.

A straightforward consequence of Theorem 3 is the following corol-
lary.

Corollary 3. Let Hf and Hg be C2-hedgehogs that are linearly inde-
pendent in H3. If Hf and Hg are of nonzero constant width, then their
curvature functions Rf and Rg are distinct.

A hedgehog Hh of Rn+1 is said to be analytic if its support function
h is Cω on Sn.

Theorem 4. Let Hf and Hg be analytic (resp. projective C2) hedgehogs
of R3 that are linearly independent in H3. If the mixed curvature function
of Hf and Hg does not change sign on S2, then Hf and Hg have distinct
curvature functions.

3. Proof of the results and further remarks

Proof of Theorem 1. By assumption, there exists (λ, µ) ∈ R2 such that
the hedgehog Hλf+µg is of class C2+. We can assume that |λ| 6= |µ|.
Let us assume that Rf = Rg. We then have:

Rλf+µg = λ2Rf + µ2Rg + 2λµR(f,g)

= µ2Rf + λ2Rg + 2µλR(f,g)

= Rµf+λg.

As the hedgehogHλf+µg is of class C2+, the equality Rλf+µg = Rµf+λg im-
plies the existence of an ε ∈ {−1, 1} such that λf +µg = ε (µf + λg) by
Minkowski’s uniqueness theorem. We thus have (λ− εµ) f = ε (λ− εµ) g
and hence f = εg since λ− εµ 6= 0. �

Lemma 5. Let Hf and Hg be two C2-hedgehogs of R3. If u ∈ S2 is
such that Rg (u) > 0, then

R(f,g) (u)2 ≥ Rf (u)Rg (u) .

Proof of the lemma. Define Q : R → R by Q (t) = Rf+tg (u). By
bilinearity and symmetry of the mixed curvature function, we have:

∀t ∈ R, Q (t) = Rf (u) + 2tR(f,g) (u) + t2Rg (u) .
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Let us consider the ‘reduced’discriminant ∆ = R(f,g) (u)2−Rf (u)Rg (u)
of the quadratic trinomial Q(t). On the one hand, from the assump-
tion Rg (u) > 0, it follows that Q(t) > 0 for any large enough t. On
the other hand, there exists some λ ∈ R such that R(1,f+λg) (u) =
R(1,f) (u) + λR(1,g) (u) = 0 and hence Q (λ) = Rf+λg (u) ≤ 0. There-
fore ∆ ≥ 0, which achieves the proof. �

Surprisingly, there exist nontrivial (i.e., distinct from a point) hedge-
hogs of R3 whose curvature function is nonpositive all over S2 [10, 16],
which disproves a conjectured characterization of the 2-sphere [1, 5].
However, the support function of such a hedgehog cannot be neither
analytic nor antisymmetric on S2:

Lemma 6 ([2, 10 Theorem 3]). Let Hh be an analytic (resp. a projec-
tive C2) hedgehog in R3. If the curvature function Rh of Hh is nonposi-
tive all over S2, then Hh is reduced to a single point.

Lemma 7. Let Hg be a convex hedgehog of class C2+ in R3. Given
a projective hedgehog Hf in R3, the mixed curvature function R(f,g) is
identically zero on S2 only if Hf is reduced to a single point, that is,
only if f is the restriction to S2 of a linear form on R3.

Proof of the lemma. Since Hg is of class C2+, we have

Rf (u)Rg (u) ≤ R(f,g) (u)2

by Lemma 5. From R(f,g) (u) = 0, we then deduce that Rf ≤ 0 which
implies the result by Lemma 6. �

Proof of Theorem 2. By assumption, h1 and h2 are of the form
h1 = f1 + λ1k

h2 = f2 + λ2k
,

where λ1, λ2 are nonzero real numbers, f1, f2 the support functions of
projective hedgehogs and k the support function of a centered convex
surface of class C2+. Assume that Rh1 = Rh2 . By bilinearity and sym-
metry of the mixed curvature function, this gives

Rf1 + λ21Rk + 2λ1R(f1,k) = Rf2 + λ22Rk + 2λ2R(f2,k).

Splitting into symmetric and antisymmetric parts, we get
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Rf1 + λ21Rk = Rf2 + λ22Rk

λ1R(f1,k) = λ2R(f2,k)

.

By linearity of the mixed curvature function in the first argument, the
second equation is equivalent to R(λ1f1−λ2f2,k) = 0. By Lemma 7, this
implies that Hλ1f1−λ2f2 is a point and hence that Hλ1f1 = Hλ2f2 in H3.
Now, by multiplying each member of the first equation of the previous
system by λ21, we get

λ21Rf1 + λ41Rk = λ21Rf2 + λ21λ
2
2Rk,

and hence

Rλ1f1 −Rλ1f2 = λ21
(
λ21 − λ22

)
Rk

by bilinearity of the mixed curvature function. Therefore,

Rλ2f2 −Rλ1f2 = λ21
(
λ21 − λ22

)
Rk,

that is, (
λ22 − λ21

) (
Rf2 − λ21Rk

)
= 0.

As Hf2 is projective (resp. Hk is convex of class C2+), we have [9]:∫
S2
Rf2dσ ≤ 0 and

∫
S2
Rkdσ > 0.

Therefore, Rf2 6= λ21Rk. From the previous equation, we thus get λ22 =
λ21, that is:

∃ε ∈ {−1, 1} , λ2 = ελ1.

Now, λ1Hf1 = Hλ1f1 = Hλ2f2 = λ2Hf2 and λ1, λ2 are nonzero. There-
fore, we have Hf1 = εHf2 in H3, that is, Hf2 = εHf1 and hence

Hh2 = Hf2+λ2k = Hf2 + λ2Hk = ε (Hf1 + λ1Hk) = εHh1 in H3,

which contradicts the fact that Hh1 and Hh2 are linearly independent
in H3. �

Lemma 8. Let Hf and Hg be two C2-hedgehogs of R3. If their cur-
vature functions Rf and Rg are identically equal on S2, then either
Rf−g (u) ≤ 0 or Rf+g (u) ≤ 0 for all u ∈ S2.
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Proof of the lemma. Assume that Rf−g (u) > 0 (resp. Rf+g (u) > 0).
By Lemma 5, we then have

R(f−g,f+g) (u)2 ≥ Rf−g (u)Rf+g (u) .

Now the assumption Rf = Rg implies

R(f−g,f+g) = Rf −Rg = 0 and hence Rf−g (u)Rf+g (u) ≤ 0.

Therefore Rf−g (u) ≤ 0 (resp. Rf+g (u) ≤ 0). �

Proof of Theorem 4. We prove the result by contraposition. Assume that
Rf and Rg are identically equal on S2. Since Hf and Hg are analytic
(resp. projective and C2) hedgehogs of R3 that are linearly independent
in H3, it follows from Lemma 6 that there must exist (u, v) ∈ S2×S2 such
that Rf−g (u) > 0 and Rf+g (v) > 0. By Lemma 8, we then deduce that
Rf+g (u) ≤ 0 and Rf−g (v) ≤ 0. Now we have R(f,g) = 1

4
(Rf+g −Rf−g),

so that 
Rf−g (u) > 0

Rf+g (u) ≤ 0
and


Rf+g (v) > 0

Rf−g (v) ≤ 0

implies R(f,g) (u) < 0 and R(f,g) (v) > 0. �
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